Answer:
The applied force is greater than the frictional force.
Explanation:
the chair moves at <u>a constant speed</u><u> </u><u>therefore</u><u>,</u><u> </u><u>the</u><u> </u><u>answer</u><u> </u><u>is</u><u> </u><u>not</u><u> </u><u>A</u><u> </u><u>or</u><u> </u><u>C</u><u>.</u>
if there is no friction then the chair <u>would accelerate and it would not be at a constant speed</u><u>.</u>
hence, the only possible answer is B.
Answer:
a
Explanation:
5N %¥€
So be cool.stay safe.bye bla bla bla bla bla bla
Answer:
Explanation:
F=kx
x=F/k
F=2000 kg
x=100 cm=9*10^-3
effective spring constant=k=F/x
k=2000/9*10^-3=2.2*10^-5
now frequency
f=1/2π√k/m
f=1/2*3.14√2.2*10^-5/310
f=1/6.28√7.097*10^-8
f=1/6.28*2.7*10^-4
f=0.16*2.7*10^-4
f=4.32*10^-5
Answer:
The second dart leaves the gun two times as faster than the first one.
Explanation:
Assuming no energy loss during the spring-dart energy transfer, we have by the conservation of energy principle

Given an arbitrary
and its double,
, launch velocities are
