The answer is- The energy of 1 L water at temperature 347.78 °C have more energy as 1 L of water at temperature 65°C.
Heat is a type of energy that causes a person's body to feel hot or cold.
While the temperature of an object is a parameter that indicates how hot or cold the object is.
How is the temperature in degree Fahrenheit converted to degree celsius?
- To convert the temperature in Fahrenheit to Celsius, subtract 32 and multiply by 5/9.
°
- Now, heat is a form of energy that flows from hotter object to colder object and temperature indicates whether the object is hot or cold by measuring its average kinetic energy.
- Now, the given temperature of 1 L water is 658 °F. This temperature in degree celsius is calculated as-
°C
- Now, higher the temperature, higher is the energy of water. Thus, the energy of 1 L water at 347.78 °C have more energy as 1 L of water at 65°C.
To learn more about heat and temperature, visit:
brainly.com/question/20038450
#SPJ4
Answer:
Manganese: Mn
Explanation:
The elestron configuration would show this is 25 electrons
Atomic number : 25
this electron configuration ends in
half of the d subshell which is 10
Answer:
double replacement MgN2O6 + KF
Explanation:
Answer: Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.
According to the neutralization law,
where,
= molarity of solution = 0.338 M
= volume of solution = 25.7 ml
= molarity of solution = 0.155 M
= volume of solution = ?
= valency of = 1
= valency of = 1
Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
This problem is providing us with the volume of nitric acid that is titrated with 0.18 L of 0.1-M sodium hydroxide and asks for the concentration of the acid. At the end, the result turns out to be 0.045M, according to the following.
<h3>Acid-base titrations:</h3>
In chemistry, acid-base titrations allow us to quantify the volume or concentration of an acid or base via the following equation:
Where the subscript A stands for the acid and B for the base; which means one can calculate any of the variables there by knowing the other three. This equation is based on the balanced neutralization chemical equation, which takes place between the acid and the base.
Thus, we can write the reaction between NaOH and HNO3 as:
In such a way, we can solve for the concentration of the acid as shown below:
Learn more about titration: brainly.com/question/25485091