Answer:
1
Explanation:
because there barely eating and there eating protien and healthy foods
Explanation:
It is known that the relation between pH and
is as follows.
pH = ![pK_{a} + log \frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
and, 
Hence, first we will calculate the value of
as follows.

=
= 4.75
Now, we will calculate the value of pH as follows.
pH = ![pK_{a} + log \frac{[\text{sodium acetate}]}{\text{acetic acid}}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5B%5Ctext%7Bsodium%20acetate%7D%5D%7D%7B%5Ctext%7Bacetic%20acid%7D%7D)
=
= 4.75 + (-0.677)
= 4.07
Therefore, we can conclude that the pH of given solution is 4.07.
Answer:
439.7nm
Explanation:
Energy of a quantum can be calculated using below formula
E=hv...........eqn(1)
But v=λ/ c .........eqn(2)
If we substitute eqn(2) into eqn(1) we have
E= hc/(λ)
Where E= energy
h= Plank's constant= 6.62607004 × 10-34 m2 kg / s
c= speed of light
c= 2.998 × 10^8 m/s
λ= wavelength= ?
But the energy was given in Kj , it must be converted to Kj/ photon for unit consistency.
Energy E= 272 kJ/mol × 1mol/6.02× 10^23
Energy= 451.83× 10^-24 Kj/ photon
E= hc/(λ)...........eqn(1)
If we make λ subject of the formula
λ= hc/E
Then substitute the values we have
λ= [(6.626 × 10^-34) × (2.998 × 10^8)]/451.83× 10^-24
λ=(0.00043965) × (1Kj/1000J) × (10^9nm/1m)
λ=439.7nm
Hence, the longest wavelength of radiation with enough energy to break carbon-sulfur bonds is 439.7nm
This question is incomplete because the options are missing; here are the options:
Which of the following is LESS dense than water?
The spoon
The glass
The tablets
The bubbles
The correct answer to this question is The bubbles
Explanation:
In general, the density of materials and substances affects their buoyancy. This implies in water less dense materials will float and those with higher density will sink. In the situation presented, the only element that is less dense than water are bubbles; this is shown by the movement of the bubbles as these originate in the bottom of the glass of water but they rise to the surface, which shows they are less dense than water.