Answer:
<em>765,000Joules or 765kJ</em>
Explanation:
The Quantity of heat required is expressed as;
Q = (mcΔt)al + (mcΔt)water
m is the mass
c is specific heat capacity
Δt is the change in temperature
Q = (3(900)(90-5)) + (1.5(4200)(90-5))
Q = 2700*85 + 6300*85
Q = (2700+6300)85
Q = 9000*85
<em>Q = 765,000</em>
<em>Hence the amount of energy needed is 765,000Joules or 765kJ</em>
69 i agree with her hope this helps
Answer:
(a) You can tell that have the same strength because they have attracted the same amount of paper clips.
(b) Iron is used in electromagnets because steel retained magnetic properties after the power was turned off, but in the iron, the paper clips dropped off right away.
Answer:
the force will decrease to 3/4 of its original value.
Explanation:
The initial electric force between the two charges is:

where
k is the Coulomb's constant
q is the magnitude of each charge
r is their separation
Later, half of one charge is transferred to the other charge; this means that one charge will have a charge of

while the other charge will be

So, the new force will be

So, the force will decrease to 3/4 of its original value.
Answer:
(a) 
(b) 
(c) K.E. = 21.168 J
(d) 
Explanation:
Given:
- mass of a block, M = 3.6 kg
- initial velocity of the block,

- constant downward acceleration,

That a constant upward acceleration of
is applied in the presence of gravity.
∴
- height through which the block falls, d = 4.2 m
(a)
Force by the cord on the block,



∴Work by the cord on the block,


We take -ve sign because the direction of force and the displacement are opposite to each other.

(b)
Force on the block due to gravity:

∵the gravity is naturally a constant and we cannot change it


∴Work by the gravity on the block,



(c)
Kinetic energy of the block will be equal to the net work done i.e. sum of the two works.
mathematically:


K.E. = 21.168 J
(d)
From the equation of motion:

putting the respective values:

is the speed when the block has fallen 4.2 meters.