The answer is: mass is 40.17 kilograms.
d = 0.758 g/mL; density of fuel.
V = 14.0 gal; volume.
A gallon is a unit of volume in both the US customary and imperial systems of measurement. The US gallon is defined as 231 cubic inches (3.785 liters).
1 gal = 3785.41 mL.
V = 14 gal · 3785.41 mL:
V = 52995.74 mL.
m = 52995.74 mL · 0.758 g/mL.
m = 40170.77 g; mass of fuel.
m = 40170.77 g ÷ 1000 g/kg.
m = 40.17 kg.
Answer:
4.13×10²⁷ molecules of N₂ are in the room
Explanation:
ideal gases Law → P . V = n . R . T
Pressure . volume = moles . Ideal Gases Constant . T° K
T°K = T°C + 273 → 20°C + 273 = 293K
Let's determine the volume of the room:
18 ft . 18 ft . 18ft = 5832 ft³
We convert the ft³ to L → 5832 ft³ . 28.3L / 1 ft³ = 165045.6 L
1 atm . 165045.6 L = n . 0.082 L.atm/mol.K . 293K
(1 atm . 165045.6 L) / 0.082 L.atm/mol.K . 293K = n
6869.4 moles of N₂ are in the room
If we want to find out the number of molecules we multiply the moles by NA
6869.4 mol . 6.02×10²³ = 4.13×10²⁷ molecules
Answer:
sodium hydroxide is the limiting reactant
Explanation:
The first step is usually to put down the balanced reaction equation. This is the first thing to do when solving any problem related to stoichiometry. The balanced reaction equation serves as a guide during the solution.
2NBr3 + 3NaOH = N2 + 3NaBr + 3HOBr
Let us pick nitrogen gas as our product of interest. Any of the reactants that gives a lower number of moles of nitrogen gas is the limiting reactant.
For nitrogen tribromide
From the balanced reaction equation;
2 moles of nitrogen tribromide yields 1 mole of nitrogen gas
4.3 moles of nitrogen tribromide will yield 4.3 ×1/ 2 = 2.15 moles of nitrogen gas
For sodium hydroxide;
3 moles of sodium hydroxide yields 1 mole of nitrogen gas
5.9 moles of sodium hydroxide yields 5.9 × 1/ 3= 1.97 moles of nitrogen gas
Therefore, sodium hydroxide is the limiting reactant.
I believe it was Hiroshima. Followed by Nagasaki. Moscow was never bombed in my knowledge, and Auschwitz was a death camp, so it wasn't bombed.