1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
15

A tugboat tows a ship with a constant force of magnitude F1. The increase in the ship's speed during a 10 s interval is 3 km/h.

When a second tugboat applies an additional constant force of magnitude F2 in the same direction, the speed increases by 18 km/h during a 10 s interval. How do the magnitudes of F1 and F2 compare? (Neglect the effects of water resistance and air resistance.)

Physics
1 answer:
Amanda [17]3 years ago
8 0

Answer:

F_{1}=\frac{1}{5}F_{2}  or  F_{2}=5F_{1}

In other words, F_{1} is one fifth of F_{2} or F_{2} is five times as big as F_{1}

Explanation:

In order to solve this problem we must start by sketching the situation (refer to the attached picture).

When the ship is pulled only by force 1, it will change its speed by 3km/hr in 10 seconds. So in order to use these values we need to either turn the km/hr in km/s or turn the seconds to hours. Let's turn the seconds to hours:

10s*\frac{1hr}{3600s}=\frac{1}{360} hr

so we can now use the acceleration formula to find the acceleration of the boat so we get:

a=\frac{\Delta v}{\Delta t}

which will give us an accceleration of:

a=\frac{3km/hr}{\frac{1}{360}hr}=1080km/hr^{2}

once we got the acceleration we can for sure say taht:

F_{1}=ma=m*1080\frac{km}{hr^{2}}

Now, if we take a look at the second drawing we can see that the resultant force applied to the boat is found by adding the two forces, force one and force two, so we get:

F_{1}+F_{2}=ma

in this case the acceleration changes because the change in velocity is of 18km/hr in the same 10 seconds, so we get that:

a=\frac{\Delta v}{\Delta t}

a=\frac{18km/hr}{\frac{1}{360}hr}=6480km/hr^{2}

so we can say that:

F_{1}+F_{2}=m*6480km/hr^{2}

we can substitute the first force into this equation so we get:

m*1080km/hr^{2}+F_{2}=m*6480km/hr^{2}

and solve for the second force, so we get:

F_{2}=m*6480km/hr^{2}-m*1080km/hr^{2}

which yields:

F_{2}=m*5400km/hr^{2}

Now we can compare theh two forces, force 1 and force 2 by dividing them:

\frac{F_{1}}{F_{2}}=\frac{m*1080km/hr^{2}}{m*5400km/hr^{2}}

which yields:

\frac{F_{1}}{F_{2}}=\frac{1}{5}

when solving for the first force we get:

F_{1}=\frac{1}{5}F_{2}

which tells us that the second force is one fifth of the first force.

and when solving for the second force we get that:

F_{2}=5F_{1}

which means that the second force is 5 times as big as the first force.

You might be interested in
What information is needed to determine the orientation of an orbital?
kolbaska11 [484]

Answer:

The magnetic quantum number (l) determines the orientation of an orbital

Explanation:

The magnetic quantum number of an electron's orbital is the spatial orientation of the electron's orbital

The magnetic quantum number, ml, specifies the orientation and number of orbitals of electrons in a subshell. The value of the magnetic quantum number is dependent on the angular momentum quantum number I with values ranging from -I to +I.

The shape of the electron's orbital is determined by the angular momentum quantum number.

8 0
3 years ago
The springs of a 1500 kg car compress 5.00 mm when its 68 kg driver gets into the driver's seat. Part A If the car goes over a b
elena-s [515]

Answer:

the frequency of the oscillation is 1.5 Hz

Explanation:

Given;

mass of the spring, m = 1500 kg

extention of the spring, x = 5 mm = 5 x 10⁻³ m

mass of the driver = 68 kg

The weight of the driver is calculated as;

F = mg

F = 68 x 9.8 = 666.4 N

The spring constant, k, is calculated as;

k = F/m

k = (666.4 N) / (5 x 10⁻³ m)

k = 133,280 N/m

The angular speed of the spring is calculated;

\omega = \sqrt{\frac{k}{m} } \\\\\omega = \sqrt{\frac{133280}{1500} } = 9.426 \ rad/s

The frequency of the oscillation is calculated as;

ω = 2πf

f = ω / 2π

f = (9.426) / (2π)

f = 1.5 Hz

Therefore, the frequency of the oscillation is 1.5 Hz

6 0
3 years ago
This group of elements is in group 2?
asambeis [7]

Answer:

If you meant the Periodic Table it's the alkaline-earth metal

beryllium (Be)

magnesium (Mg)

calcium (Ca)

strontium (Sr)

barium (Ba)

radium (Ra)

Explanation:

5 0
2 years ago
Which of the following properties is the same for all electromagnetic radiation in a vacuum?
Crazy boy [7]
It is wavelength i think so!!!!
3 0
3 years ago
NEED HELP!!! ANSWER THESE 5 QUESTIONS FOR 25 POINTS!!!! PLEASE ANSWER!! I WILL GIVE YOU BRAINLIEST
ladessa [460]
1.A
2. C
3. Not Sure
4. Not Sure
5. Biometrics can help to identify
who's at risk for injuries and when
they're able to safely return, and
they can gauge athlete readiness to
determine when they'll be
performing at an optimal level.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Describe how the motions of the particles that make up an object change when the object's change when the object's temperature i
    12·1 answer
  • Rate my profile pic up to a 100
    8·1 answer
  • Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 m that makes an angle of 45∘ with th
    15·1 answer
  • A garden hose with an internal diameter of 2.9 cm is connected to a (stationary) lawn sprinkler that consists merely of a contai
    15·1 answer
  • A tank has a gate that automatically opens if the water levelhis high enough. The gate has a squarecross section of side1m and c
    11·1 answer
  • The tension in a string is 15 N, and its linear density is 0.85 kg/m. A wave on the string travels toward the -x direction; it h
    15·1 answer
  • Why do boys like boys
    10·1 answer
  • You drop a penny from the top of the Salesforce building in San Francisco. If the
    5·1 answer
  • The circuit diagram below shows the locations of four switches. Which
    14·1 answer
  • Question 45 points)<br> Which is an appropriate way to avoid heat related illness when exercising?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!