1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
15

A tugboat tows a ship with a constant force of magnitude F1. The increase in the ship's speed during a 10 s interval is 3 km/h.

When a second tugboat applies an additional constant force of magnitude F2 in the same direction, the speed increases by 18 km/h during a 10 s interval. How do the magnitudes of F1 and F2 compare? (Neglect the effects of water resistance and air resistance.)

Physics
1 answer:
Amanda [17]3 years ago
8 0

Answer:

F_{1}=\frac{1}{5}F_{2}  or  F_{2}=5F_{1}

In other words, F_{1} is one fifth of F_{2} or F_{2} is five times as big as F_{1}

Explanation:

In order to solve this problem we must start by sketching the situation (refer to the attached picture).

When the ship is pulled only by force 1, it will change its speed by 3km/hr in 10 seconds. So in order to use these values we need to either turn the km/hr in km/s or turn the seconds to hours. Let's turn the seconds to hours:

10s*\frac{1hr}{3600s}=\frac{1}{360} hr

so we can now use the acceleration formula to find the acceleration of the boat so we get:

a=\frac{\Delta v}{\Delta t}

which will give us an accceleration of:

a=\frac{3km/hr}{\frac{1}{360}hr}=1080km/hr^{2}

once we got the acceleration we can for sure say taht:

F_{1}=ma=m*1080\frac{km}{hr^{2}}

Now, if we take a look at the second drawing we can see that the resultant force applied to the boat is found by adding the two forces, force one and force two, so we get:

F_{1}+F_{2}=ma

in this case the acceleration changes because the change in velocity is of 18km/hr in the same 10 seconds, so we get that:

a=\frac{\Delta v}{\Delta t}

a=\frac{18km/hr}{\frac{1}{360}hr}=6480km/hr^{2}

so we can say that:

F_{1}+F_{2}=m*6480km/hr^{2}

we can substitute the first force into this equation so we get:

m*1080km/hr^{2}+F_{2}=m*6480km/hr^{2}

and solve for the second force, so we get:

F_{2}=m*6480km/hr^{2}-m*1080km/hr^{2}

which yields:

F_{2}=m*5400km/hr^{2}

Now we can compare theh two forces, force 1 and force 2 by dividing them:

\frac{F_{1}}{F_{2}}=\frac{m*1080km/hr^{2}}{m*5400km/hr^{2}}

which yields:

\frac{F_{1}}{F_{2}}=\frac{1}{5}

when solving for the first force we get:

F_{1}=\frac{1}{5}F_{2}

which tells us that the second force is one fifth of the first force.

and when solving for the second force we get that:

F_{2}=5F_{1}

which means that the second force is 5 times as big as the first force.

You might be interested in
Suppose the coefficient of kinetic friction between mA and the plane in the figure(Figure 1) is μk = 0.15, and that mA=mB=2.7kg.
luda_lava [24]
A ) 
T = mB g + mB a
T + mA a - mA g sin 35° = (Mi) mA g cos 35°
------------------------------------------------------------
T = 2.7 · 9.81  + 2.7 a
T = 26.487 + 2.7 a
26.487 + 2.7 a + 2.7 a - 2.7 · 9.81 · 0.574 = 0.15 · 2.7 · 9.81 · 0.819
5.4 a + 26.487 - 15.2023 = 3.2539
5.4 a = 8.0296
a = 1.487 ≈ 1.5 m/s²
B )
T = 2,7 · 9.81 = 26.487 
26.487 - 15.2035 = (Mi) · 2.7 · 9.81 · 0.819
11.2835 = (Mi) · 21.69
(Mi) = 11.2835 : 21.69 = 0.52
4 0
3 years ago
What is a small body that follows a highly elliptical orbit around the sun
melomori [17]
A Planet, such as (pluto)
4 0
3 years ago
Read 2 more answers
A 1500 kg car traveling due east at 20<br> m/s slows to a stop in 5.0 seconds. What is the impulse?
lbvjy [14]

Answer:

Hans-Georg Gadamer (1900-2002) was an influential German philosopher of the twentieth century, inspiring a variety of scholastic disciplines from aesthetics to theology. In suggesting understanding was interpretation and vice versa, Gadamer identifies language acting as the medium for understanding. Gadamer’s philosophy of hermeneutics has major implications for education and formal schooling because Hermeneutics help to know the knowledge a student has prior to the lesson. This helps in the dialogue about a subject matter and therefore, the philosophy of Hermeneutics when applied in classroom helps the teachers pass information easily and effectively, hence, the learners capture the whole content of a topic.

Explanation:

5 0
2 years ago
Read 2 more answers
Which diagram shows diffraction as light passes through an opening?
Bingel [31]
I don’t see the diagram
3 0
3 years ago
Read 2 more answers
Does groundwater flow or stay still?
zhenek [66]

Answer:

yes it flows through flow paths.

Explanation:

5 0
2 years ago
Other questions:
  • an automobile panel lamp with a resistance of 33 ohm is placed across the battery shown in Figure 11. What is the current throug
    15·1 answer
  • A mechanic pushes a 3.60 ✕ 103-kg car from rest to a speed of v, doing 5,130 j of work in the process. during this time, the c
    9·1 answer
  • At 8:00 am, the temperature in the earth science room was measured to be 62 degrees Fahrenheit. By 12:00 pm, the temperature had
    7·1 answer
  • train engine of mass 4500 kg is connected by a rope to boxcar A. Boxcar A is connected by a second rope to boxcar B, which is co
    12·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!<br><br> Which wave has the smallest amplitude?
    15·1 answer
  • A river flows at a rate of 2 km divided by h. A patrol boat travels 54 km upriver and returns in a total time of 9 hr. What is t
    9·1 answer
  • The distance between an object and a reference point is the object's what?
    12·2 answers
  • Multiple questions onlyy!! Please help!! And if u can answer the response questions that would be helpful!!
    6·1 answer
  • He diagram shows a person holding a bow and arrow.
    8·2 answers
  • Explain the term majority and minority carriers of a material with respect to the acceptor and donor impurity.​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!