Answer:
7.6 g
Explanation:
"Well lagged" means insulated, so there's no heat transfer between the calorimeter and the surroundings.
The heat gained by the copper, water, and ice = the heat lost by the steam
Heat gained by the copper:
q = mCΔT
q = (120 g) (0.40 J/g/K) (40°C − 0°C)
q = 1920 J
Heat gained by the water:
q = mCΔT
q = (70 g) (4.2 J/g/K) (40°C − 0°C)
q = 11760 J
Heat gained by the ice:
q = mL + mCΔT
q = (10 g) (320 J/g) + (10 g) (4.2 J/g/K) (40°C − 0°C)
q = 4880 J
Heat lost by the steam:
q = mL + mCΔT
q = m (2200 J/g) + m (4.2 J/g/K) (100°C − 40°C)
q = 2452 J/g m
Plugging the values into the equation:
1920 J + 11760 J + 4880 J = 2452 J/g m
18560 J = 2452 J/g m
m = 7.6 g
Answer:
Read below!
Explanation:
You can watch the sun wheel across the sky during the day, and the stars at night. Focus a telescope on any star besides the north star--especially southern stars--and you can watch them drift across your field of view.
An alternative explanation is that all the stars are painted on (or holes in) some canopy that rotates around the earth. This explanation does not account for the motion of the "wanderers," or planets, as the Greeks called them, or for the path of the moon among the stars.
As we know the stars are massive bodies of significant and varying distance to the earth, the notion they all swing around us in unison seems highly implausible
The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1
Answer:
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points,
Explanation:
To resolve the debate, it must be shown that the two have part of the reason, the space or distance between the two points divided by time is the average speed between the points.
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points, in the only case that it is so is when there is no acceleration.
Therefore neither of them is right.