Answer:
acceleration a = 1.04 m/s2
Explanation:
Assume the train has a speed of 23m/s when the last car passes the railway workers. Once this happens the last car would have traveled a total distance of the 180m distance between the railway worker standing 180 m from where the front of the train started plus the 75m distance from the first car to the last car:
s = 75 + 180 = 255 m
We can use the following equation of motion to find out the distance traveled by the car:
where v = 23 m/s is the velocity of the car when it passes the worker,
= 0m/s is the initial velocity of the car when it starts, a m/s2 is the acceleration, which we are looking for.



Answer:
Perfectly inelastic collision
Explanation:
There are two types of collision.
1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.
2. Inelastic collision: When the momentum the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.
For a perfectly elastic collision, the two bodies stick together after collision.
Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.
The correct is Reverberation. A reverberation is created when a sound or signal is reflected causing a large number of reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air.
Answer:
0.159
Explanation:
the formula to find its is 1÷2*gt^2