To solve this problem it is necessary to take into account the concepts of Gravitational Force and Kinetic Energy.
The kinetic energy is given by the equation:

La energía gravitacional por,

Where m is the mass, v is the velocity, G the gravitational constant
the mass of the earth, m the mass of the sun and d the distance ..
The sum of the energies, we must be a total energy

By the type of orbit we know that
E> 0 is a hyperbolic orbit
E = 0 is a parabolic orbit
E <0 is a closed orbit.
In the case of hyperbolic orbit
E>0

The case of the comet is a closed orbit, so,
E<0

For parabolic orbit
E=0

For the sun and the earth


where 
For elliptical orbit
<h2>Answer: The more precisely you know the position of a particle, the less well you can know the momentum of the particle
</h2>
The Heisenberg uncertainty principle was enunciated in 1927. It postulates that the fact that each particle has a wave associated with it, imposes restrictions on the ability to determine <u>its position and speed at the same time. </u>
In other words:
<em>It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle.</em>
<h2>So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity. </h2><h2 />
In fact, even with the most precise devices, the uncertainty in the measurement continues to exist. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Therefore the correct option is C.
To solve this problem we will apply the linear motion kinematic equations, which describe the change in velocity, depending on the acceleration and the distance traveled, that is,

Where,
= Final Velocity
= Initial Velocity
a = Acceleration
h = height
Our values are given as,

Replacing we have,



Therefore the height of the cliff is 121ft
Answer:
a ) 4.5 N.s
b) V =5 m/s
Explanation:
given,
mass of rifle(M) = 0.9 kg
mass of bullet(m) = 6 g = 0.006 kg
velocity of the bullet(v) = 750 m/s
a) momentum of bullet = m × v
= 750 × 0.006
= 4.5 N.s
b) recoil velocity
m × u + M × U = m × v + M × V
0 + 0 = 0.006 × 750 - 0.9 × V
V = 
V =5 m/s