Answer:
735 J/kg/C
Explanation:
Q = mcT
943 = (0.447)( c )(2.87)
1.28289c = 943
c = <u>7</u><u>3</u><u>5</u><u> </u><u>J</u><u>/</u><u>k</u><u>g</u><u>/</u><u>C</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u>
Answer:
the distance traveled by the car is 42.98 m.
Explanation:
Given;
mass of the car, m = 2500 kg
initial velocity of the car, u = 20 m/s
the braking force applied to the car, f = 5620 N
time of motion of the car, t = 2.5 s
The decelaration of the car is calculated as follows;
-F = ma
a = -F/m
a = -5620 / 2500
a = -2.248 m/s²
The distance traveled by the car is calculated as follows;
s = ut + ¹/₂at²
s = (20 x 2.5) + 0.5(-2.248)(2.5²)
s = 50 - 7.025
s = 42.98 m
Therefore, the distance traveled by the car is 42.98 m.
Answer:
The gazelles top speed is 27.3 m/s.
Explanation:
Given that,
Acceleration = 4.2 m/s²
Time = 6.5 s
Suppose we need to find the gazelles top speed
The speed is equal to the product of acceleration and time.
We need to calculate the gazelles top speed
Using formula of speed
Where, v = speed
a = acceleration
t = time
Put the value into the formula
Hence, The gazelles top speed is 27.3 m/s.
The resultant vector can be determined by the component vectors. The component vectors are vector lying along the x and y-axes. The equation for the resultant vector, v is:
v = √(vx² + vy²)
v = √[(9.80)² + (-6.40)²]
v = √137 or 11.7 units
A 50w motor can do 500w in 5 seconds