1 molecule of NaCl contains 1 sodium ion (Na+), that's why if we have 3.0 moles of.
NaCl, we have 3.0 moles of Na+.
N(ions) = n(mol) · NA.
N(ions) = 3.0 moles · 6.02·1023 = 18.06 ·1023 ions.
You must add 7.5 pt of the 30 % sugar to the 5 % sugar to get a 20 % solution.
You can use a modified dilution formula to calculate the volume of 30 % sugar.
<em>V</em>_1×<em>C</em>_1 + <em>V</em>_2×<em>C</em>_2 = <em>V</em>_3×<em>C</em>_3
Let the volume of 30 % sugar = <em>x</em> pt. Then the volume of the final 20 % sugar = (5 + <em>x</em> ) pt
(<em>x</em> pt×30 % sugar) + (5 pt×5 % sugar) = (<em>x</em> + 5) pt × 20 % sugar
30<em>x</em> + 25 = 20x + 100
10<em>x</em> = 75
<em>x</em> = 75/10 = 7.5
Answer:
96.99 C degree change
Explanation:
480 cal / ( 150 g * .033 cal/g-C ) = 96.99 C
The largest advantage of sodium-ion batteries is the high natural abundance of sodium. This could make commercial production of sodium-ion batteries less expensive than lithium-ion batteries. As of 2020, sodium ion batteries have very little share of the battery market.