Answer: Volume = 0.01L
Explanation:
The density of a substance is given by; Density = Mass / Volume.
In this question, Mass = 1000g, Volume = ? and Density = 100 Kg/L
For the units to be uniform, we convert 1000g to Kg = 1Kg
Therefore, Volume = Mass / Density = 1Kg / 100Kg/L = 0.01L
Answer:
b is the anwer
Explanation:
the option is the explanation
Answer:
1.514 moles
Explanation:
For this problem you want to use dimensional analysis and cancel out your molecules of sugar and be left with moles of sugar. We know that 1 mole (of anything) = 6.022 x 10 ^ 23 molecules, so we should use that conversion to help us. Start with 9.12 x 10 ^23 molecules and divide by 6.022 x 10 ^ 23 molecules, and you will be left with moles.
Hope this helps!
1.34 L of HF
Explanation:
We have the following chemical reaction:
Sn (s) + 2 HF (g) → SnF₂ (s) + H₂ (g)
First we calculate the number of moles of SnF₂:
number of moles = mass / molecular weight
number of moles of SnF₂ = 5 / 157 = 0.03 moles
From the chemical reaction we see that 1 mole of SnF₂ are produced from 2 moles of SnF₂. This will mean that 0.03 moles of SnF₂ are produced from 0.06 moles of HF.
Now at standard temperature and pressure (STP) we can use the following formula to calculate the volume of HF:
number of moles = volume / 22.4 (L/mole)
volume of HF = number of moles × 22.4
volume of HF = 0.06 × 22.4 = 1.34 L
Learn more about:
problems with gases at STP
brainly.com/question/8857334
#learnwithBrainly
Answer: Option (C) is the correct answer.
Explanation:
Chemical formula of a secondary amide is R'-CONH-R, where R and R' can be same of different alkyl or aryl groups. Here, the hydrogen atom of amide is attached to more electronegative oxygen atom of the C=O group.
Therefore, the hydrogen atom will be more strongly held by the electronegative oxygen atom. As a result, there will be strongly hydrogen bonded in the liquid phase of secondary amide.
Whereas chemical formula of nitriles is RCN, ester is RCOOR' and acid chlorides are RCOCl. As no hydrogen bonding occurs in any of these compounds because hydrogen atom is not being attached to an electronegative atom.
Thus, we can conclude that secondary amides are strongly hydrogen bonded in the liquid phase.