Explanation:
<u>Using Equations of Motion</u> :
(1) v = u + at
24 = 6.5 + a * 210
<u>a (Acceleration) = 0.083 m/s^2 </u>
<u>(</u><u>2</u><u>)</u><u> </u> v^2 = u^2 + 2aS
S = 576 - 42.25 / 0.166
<u>S (Distance travelled) = 3215.3 m </u>
(Option A seems a typo since the answer is 3215.3 m)
Conservation of momentum requires that the sum of momenta after is equal to that before. Since initially nothing is moving, the sum after the shot will also add to zero.
m₁v₁ = -m₂v₂
Solve for the cannon's velocity v₁
v₁ = -m₂v₂/m₁ = -2.10m/s
The negative sign means it's moving 2.10m/s south.
Answer:
(A) 12.222 ohm (B) 990 W
Explanation:
We have given the voltage of the heating element V = 110 V
The current in the heating element i = 9 A
(a) According to ohm's law V =iR
So 

(b) The power dissipated in the resistor is given by
So the power dissipated = 990 W
Answers;
Explanation:
Wheel and axle gizmos answer key