1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
14

The electric field due to two point charges is found by: a) finding the stronger field. The net field will just be equal to the

strongest field.
b) determining the electric field due to each charge and adding them together as vectors.
c) adding the magnitude of the two fields together.
d) adding the direction of the two fields together.
e) None of the above.
Physics
1 answer:
alekssr [168]3 years ago
7 0

Answer:

b)determining the electric field due to each charge and adding them together as vectors.

Explanation:

The electric Field is a vector quantity, in other words it has a magnitude and a direction. On the other hand, the electric field follows the law of superposition. The electric field produced by two elements is equal to the sum of the electric fields produced by each element when the other element is not present. in other words, the total electric field is solved determining the electric field due to each charge and adding them together as vectors.

You might be interested in
What happens to steam as it releases thermal energy inside a radiator?
marshall27 [118]
It condenses into liquid water.
7 0
3 years ago
Two objects that are not initially in thermal equilibrium are placed in close contact. After a while, the temperature of the cod
Dima020 [189]

Answer:

If the temperature of  the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>

Explanation:

If the temperature of  the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.

<u>We can prove this by the equation of heat for the two bodies:</u>

<em>According to given condition,</em>

\Delta T_1=\Delta T_2

\frac{Q_1}{m_1.c_1} = \frac{Q_2}{m_2.c_2}

<em>when there is no heat loss from the system of two bodies then </em>Q_1=Q_2

\frac{1}{m.c_1} =\frac{1}{m.c_2}

\Rightarrow c_1=c_2

  • Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.

The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:

  • when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.

OR

  • the mass of colder object is half the mass of the hotter object while their specific heat is same.
3 0
2 years ago
A car whose total mass is 800kg travelling with a uniform velocity of 20m/s suddenly observes a stationary dog 50m ahead on its
maxonik [38]

Answer:

The driver hits the stationery dog because the applied force is less than required force

Explanation:

Kinetic energy will be given by

KE=0.5mv^{2} where m is the mass of the vehicle and v is the speed/velocity of the vehicle.

Substituting 800 Kg for m and 20 m/s for v we obtain

KE=0.5*800*(20 m/s)^{2}=160,000

Frictional force by vehicle pads is given by

Fr=\frac {KE}{d} where d is the distance moved

Substituting 160000 for KE and 50 m for d we obtain

Fr=\frac {160000}{50}=3200 N

Therefore, the vehicle hits the dog since the required force is 3200N but the driver applied only 2000 N

7 0
2 years ago
A disk is uniformly accelerated from rest with angular acceleration α. The magnitude of the linear acceleration of a point on th
solniwko [45]

Answer:

a = R\alpha\sqrt{1 + \alpha^2t^4}

Explanation:

As we know that the acceleration of a point on the rim of the disc is in two directions

1) tangential acceleration which is given as

a_t = R\alpha

2) Centripetal acceleration

a_c = \omega^2 R

here we know that

\omega = \alpha t

a_c = (\alpha t)^2 R

now we know that net linear acceleration is given as

a = \sqrt{a_c^2 + a_t^2}

so we have

a = \sqrt{R^2\alpha^2 + R^2(\alpha t)^4}

a = R\alpha\sqrt{1 + \alpha^2t^4}

4 0
2 years ago
How many species go extinct every day??
Law Incorporation [45]
Approximately 150-200 species.
5 0
2 years ago
Other questions:
  • Define scalar and vector
    14·1 answer
  • An x-ray beam with wavelength 0.240 nm is directed at a crystal. as the angle of incidence increases, you observe the first stro
    6·1 answer
  • Do you think the benifits of nuclear power outweigh the potential drawbacks
    11·1 answer
  • A 1.5m wire carries a 3 A current when a potential difference of 74 V is applied. What is the resistance of the wire?
    10·1 answer
  • Select the correct answer. x y 2.5 6.25 9.4 88.36 15.6 243.63 19.5 380.25 25.8 665.64 The table lists the values for two paramet
    12·1 answer
  • A coil has N turns enclosing an area of A. In a physics laboratory experiment, the coil is rotated during the time interval Δt f
    7·1 answer
  • Which of the following describes how the mechanical advantage of a simple machine affects the amount of force needed for work? A
    8·1 answer
  • Your latest invention is a car alarm that produces sound at a particularly annoying frequency of 3585 Hz. To do this, the car-al
    12·1 answer
  • How many significant figures does the following number have: 0.002040?
    9·1 answer
  • An object of height 8.50 cm is placed 20.0 cm to the left of a converging lens with a focal length of 12.0 cm. Determine the ima
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!