Answer:
C) The molecules become separated from each other.
Explanation:
Answer:
101 L
Explanation:
35.0 g KOH ÷ 56.09 g/mol KOH × (1 mol H2O/ 1 mol KOH) × 18 g/mol H2O = 11.2 g H2O
35.0 g HCl ÷ 36.45 g/mol HCl × (1 mol H2O/ 1 mol HCl) × 18 g/mol H2O = 17.3 g H2O
35.0 g KOH is the limiting reactant
Answer:
C
Explanation:
The higher the period the higher the activity of an element, therefore, since iodine is in period 6 and bromine is in period 5, the described reaction is not possible due to the fact that bromine is less active
Water has a chemical formula of H2O. This means that for every 2 moles of hydrogen and 1 mole of oxygen, one mole of water will be formed.
Note that hydrogen gas and oxygen gas are both biatomic molecules.
(1) (182 mol H2) x (1 mol H2O/ 1 mol H2) = 182 mol H2O
(2) (86 mol O2) x (2 mol H2O / 1 mol O2) = 172 mol H2O
We choose the smaller number of the two as the answer to this item. Thus, the answer to this question is 172 mol of H2O can be formed out of the given quantities.
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is
To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.