To determine the mass, you need to know the molecular weight of the c8h10n4o2 . The molecular weight of <span>c8h10n4o2 would be: 8*12 + 10*1 + 4*14 + 2*16= 194g/mol.
To convert the number of molecules into moles, you need to divide it with 6.02 * 10^23. The calculation of the mass of </span>c8h10n4o2 would be:
(7.20×10^20 molecules) /(6.02 * 10^23 molecule/mol) * 194g/mol= 232 * 10^-3 grams= 0.232 grams
Answer:
appropriately shaped receptors
Explanation:
The answer is B. A good way determine this is how far right the element is on the periodic table. The further right the element is, the more electronegative it is meaning it is more willing to accept an electron. This can be explained using the valence electrons and how many need to be added or removed to complete the octet. The further right you are, the easier it is for the element to just gain a few electrons instead of loose a bunch. Noble gases are the exception to this since they don't normally react though.
Answer:
3.49 g
Explanation:
The mass is the product of volume and density:
(8.96 g/cm³)(0.39 cm³) ≈ 3.49 g
The mass of a pure-copper penny would be 3.49 g.