The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1
Answer:
The force is pull or push acting on the body which tends to change its state of rest or of motion is called force.
There are two types of force:
1.Contact force
2. Non-Contact
Answer:
a) 
b) 
Explanation:
Given:
- mass of raindrops,

- charge on the raindrops,

- horizontal distance between the raindrops,

A)
<u>From the Coulomb's Law the force between the charges is given as:</u>

we have:

<em>Now force:</em>


B)
<u>Now the acceleration on the raindrops due to the electrostatic force:</u>



The component of the force in negative z-direction is -0.144 N.
The given parameters;
- <em>current in the wire, I = 2.7 A</em>
- <em>length of the wire, L = (3.2 i + 4.3j) cm</em>
- <em>magnetic filed, B = 1.24 i</em>
The force on the segment of the wire is calculated as follows;

where;
- <em>θ is the angle wire and magnetic field</em>
<em />
The force on the wire segment will be perpendicular in negative z-direction (applying right hand rule), so there won't be any x and y component of the force.
The angle between the wire and the magnetic field is calculated as follows;

The magnitude of the wire length is calculated as follows;

The component of the force in negative z-direction is calculated as;

Thus, the component of the force in negative z-direction is -0.144 N.
Learn more here:brainly.com/question/22719779
Answer:
<em>Force B</em>
Explanation:
<u>Friction Force
</u>
It's a force that appears when an object is tried to move on a rough surface. There are two cases: when the object is at rest, we have the friction static coefficient and when the object is already moving, we have the dynamic coefficient. The static coefficient is usually greater than the second because it's harder to overcome the friction when the object is at rest.
We are told that John pushes the bed to the left with enough force to overcome the force of friction. If the movement is intended to be to the left side, the friction force appears to the right, since it always opposes to the movement. Thus the force B is the one who represents the friction force in this situation