it has a rocky core so the gravity from that compacts the gases extremly tight
Acceleration a=3m/s^2
time t= 4.1seconds
Final velocity V= 55km/h
initial velocity U= ?
First convert V to m/s
36km/h=10m/s
55km/h= 55*10/36=15.28m/s
Using the formula V= U+at
U= V-at
U= 15.28-3*4.1=15.28-12.3=2.98m/s
Initial velocity U= 2.98m/s or 10.73km/h (Using the conversion rate 36km/h=10m/s)
Hey there!
The answer would be B. The sound moves from air to water.
Sound travels through different mediums. It goes fastest in solids, a little slower in liquids, and slowest in air. Sound is a very fast wave, but remember that mediums can differ that. In a vacuum space, there is no sound at all. (ex. outer space)
Hope this helps !
Answer: 117 kPa
Explanation:
For the liquid at depth 3 m, the gauge pressure is equal to = P₁=39 kPa
For the liquid at depth 9m, the gauge pressure is equal to= P₂
Now we are given the condition that the liquid is same. That must imply that the density must be same throughout the depth.
So, For finding gauge pressure we have formula P= ρ * g * h
Also gravity also remains same for both liquids
So taking ratio of their respective pressures we have
= 
So
= 
Or P₂= 39 * 3 = 117 kPa
No.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a random error has been minimized or even eliminated.
<h3>What is a random error?</h3>
Random error is defined as the deviation of the total error from its mean value due to chance.
Random errors can result from the instrument not being precise or from mistakes by the researcher.
Random errors can be minimized by taking multiple readings and averaging the results.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a ransom error has been minimized.
Learn more about random errors at: brainly.com/question/22041172