Answer:
W = 18.88 J
Explanation:
Given that,
Constant force, F = 11.8 N (in +x direction)
Mass of an object, m = 4.7 kg
The object moves from the origin to the point (1.6i – 4.6j) m
We need to find the work is done by the given force during this displacement. The work done by an object is given by the formula as follows :

So, the work done by the given force is 18.88 J.
Answer:
Explanation:
There will not be any internal reflection . it will be only refraction
critical angle = θ
Sinθ = 1 / μg
μg = 1.43 / 1.33 =
Sinθ = 1.33 / 1.43
= .93
θ = 68.44
angle of incidence i = 68.44 / 2
= 34.22
Sin i / Sin r = μw = 1.33 / 1.43
= .93
sin 34.22 / sinθ₁ = .93 , θ₁ is angle of refraction.
sinθ₁ = sin 34.22 / .93
= .5623 / .93
= .6047
θ₁ = 37 degree Ans
Answer:
position as a function of time is y = 0.05 × cos(9.9)t
Explanation:
given data
mass = 5 kg
length = 10 cm = 0.1 m
displaced = 5 cm
to find out
position as a function of time
solution
we will apply here equilibrium that is
mass × g = k × length
put here value and find k
k = 
k = 490 N/m
and ω is
ω = 
ω = 
ω = 9.9
so here position w.r.t time is
y = 0.05 × cosωt
y = 0.05 × cos(9.9)t
so position as a function of time is y = 0.05 × cos(9.9)t