1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
12

Two blocks connected by a rope of negligible mass are being dragged by a horizontal force (see figure below). Suppose F = 65.0 N

, m1 = 14.0 kg, m2 = 26.0 kg, and the coefficient of kinetic friction between each block and the surface is 0.098
Determine the acceleration of the system

Physics
1 answer:
vovangra [49]3 years ago
7 0
Refer to the diagram shown below.

g = 9.8 m/s², and air resistance is ignored.

For mass m₁:
The normal reaction is m₁g.
The resisting force is R₁ = μm₁g.

For mass m₂:
The normal reaction is m₂g.
The resisting force is R₂ = μm₂g.

Let a =  the acceleration of the system.
Then
(m₁ + m₂)a = F - (R₁ + R₂)
(14+26 kg)*(a m/s²) = (65 N) - 0.098*(9.8 m/s²)*(14+26 kg)
40a = 65 - 38.416 = 26.584
a = 0.6646 m/s²

Answer:  0.665 m/s²  (nearest thousandth)

You might be interested in
Which statement best describes the weather shown by the purple combination of semicircles and triangles on a line on a weather m
Vaselesa [24]

Answer:

D) A warm front brings drizzly weather.

Explanation:

8 0
3 years ago
Read 2 more answers
A disk shaped grindstone of mass 3.0 kg and radius 8 cm is spinning at 600 rpm. After the power is shut off the frictional torqu
seropon [69]

Answer:

\theta=50\ revolution

Explanation:

It is given that,

Mass of the grindstone, m = 3 kg

Radius of the grindstone, r = 8 cm = 0.08 m

Initial speed of the grindstone, \omega_i=600\ rpm=62.83\ rad/s

Finally it shuts off, \omega_f=0

Time taken, t = 10 s

Let \alpha is the angular acceleration of the grindstone. Using the formula of rotational kinematics as :

\alpha =\dfrac{\omega_f-\omega_i}{t}

\alpha =\dfrac{0-62.83}{10}

\alpha =-6.283\ rad/s^2

Let \theta is the number of revolutions of the grindstone after the power is shut off. Now using the third equation of rotational kinematics as :

\omega_f^2-\omega_i^2=2\alpha \theta

\theta=\dfrac{\omega_f^2-\omega_i^2}{2\alpha }

\theta=\dfrac{-62.83^2}{2\times -6.283}

\theta=314.15\ radian

\theta=49.99\ revolution

or

\theta=50\ revolution

So, the number of revolutions of the grindstone after the power is shut off is 50.

7 0
3 years ago
What keeps the particles of a liquid from spreading out to fill an entire container in the same way that gas particles do?
Sonbull [250]

b. the forces of attraction among them limit their motion.


7 0
4 years ago
Read 2 more answers
The Young’s modulus of nickel is Y = 2 × 1011 N/m2 . Its molar mass is Mmolar = 0.059 kg and its density is rho = 8900 kg/m3 . G
Charra [1.4K]

Answer:

Atomic Size and Mass:

convert given density to kg/m^3 = 8900kg/m^3 2) convert to moles/m^3 (kg/m^3 * mol/kg) = 150847 mol/m^3 (not rounding in my actual calculations) 3) convert to atoms/m^3 (6.022^23 atoms/mol) = 9.084e28 atoms/m^3 4) take the cube root to get the number of atoms per meter, = 4495309334 atoms/m 5) take the reciprocal to get the diameter of an atom, = 2.2245e-10 m/atom 6) find the mass of one atom (kg/mol * mol/atoms) = 9.7974e-26 kg/atom Young's Modulus: Y=(F/A)/(dL/L) 1) F=mg = (45kg)(9.8N/kg) = 441 N 2) A = (0.0018m)^2 = 3.5344e-6 m^2 3) dL = 0.0016m 4) L = 2.44m 5) Y = 1.834e11 N/m^2 Interatomic Spring Stiffness: Ks,i = dY 1) From above, diameter of one atom = 2.2245e-10 m 2) From above, Y = 1.834e11 N/m^2 3) Ks,i = 40.799 N/m (not rounding in my actual calculations) Speed of Sound: v = ωd 1) ω = √(Ks,i / m,a) 2) From above, Ks,i = 40.799 N/m 3) From above, m,a = 9.7974e-26 kg 4) ω=2.0406e13 N/m*kg 5) From above, d=2.2245e-10 m 6) v=ωd = 4539 m/s (not rounding in actual calculations) Time Elapsed: 1) length sound traveled = L+dL = 2.44166 m 2) From above, speed of sound = 4539 m/s 3) T = (L+dL)/v = 0.000537505 s

7 0
3 years ago
In an RC circuit, what fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for
4vir4ik [10]

Answer:

The  fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is  

      k  = 0.903

Explanation:

From the question we are told that

     The time  constant  \tau  =  3

The potential across the capacitor can be mathematically represented as

     V  =  V_o  (1 -  e^{- \tau})

Where V_o is the voltage of the capacitor when it is fully charged

    So   at  \tau  =  3

     V  =  V_o  (1 -  e^{- 3})

     V  =  0.950213 V_o

   Generally energy stored in a capacitor is mathematically represented as

             E = \frac{1}{2 } * C  * V ^2

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor

Now  since capacitance is  constant  at  \tau  =  3

        The  energy stored can be evaluated at as

         V^2 =  (0.950213 V_o )^2

       V^2 =  0.903  V_o ^2

Hence the fraction of the energy stored in an initially uncharged capacitor is  

      k  = 0.903

4 0
4 years ago
Other questions:
  • Please help!!!! I will give brainliest if correct!!!
    14·1 answer
  • When equilibrium is reached in an electrochemical cell, the voltage reaches its maximum value. 1. false 2. true?
    14·2 answers
  • What is the power p supplied to a resistor whose resistance is r when it is known that it has a voltage δv across it?
    13·1 answer
  • A student reaches into a bag of objects.which property of the objects can be observed by using the sense of touch
    15·2 answers
  • A 78.5-kg man is standing on a frictionless ice surface when he throws a 2.40-kg book horizontally at a speed of 11.3 m/s. With
    8·2 answers
  • All life that we know of is based on carbon. Carbon's ability to form many chemical bonds is an important characteristic that al
    9·1 answer
  • The lowest possible temperature in outer space is 3.13 K. What is the rms speed of hydrogen molecules at this temperature? (The
    7·1 answer
  • Acceleration of a body is 10m/s² , what does it mean?​
    11·2 answers
  • Dose sound travel faster in a warm room or a cold room? explain your answer
    11·1 answer
  • Calculate the index of refraction for a medium in which the speed of light is 2.1x 108 m/s. The speed of light in vacuum is 3x10
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!