<span>Answer:
From the ideal gas law, MM=mRTPV; where MM = molecular mass; m = mass; P = pressure in atmospheres; V= volume in litres; R = gas constant with appropriate units.
So, 0.800â‹…gĂ—0.0821â‹…Lâ‹…atmâ‹…Kâ’1â‹…molâ’1Ă—373â‹…K0.256â‹…LĂ—0.987â‹…atm = 97.0 gâ‹…molâ’1.
nĂ—(12.01+1.01+2Ă—35.45)â‹…gâ‹…molâ’1 = 97.0â‹…gâ‹…molâ’1.
Clearly, n = 1. And molecular formula = C2H2Cl2.
I seem to recall (but can't be bothered to look up) that vinylidene chloride, H2C=C(Cl)2 is a low boiling point gas, whereas the 1,2 dichloro species is a volatile liquid. At any rate we have supplied the molecular formula as required.</span>
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH. In variable form, a thermochemical equation would look like this:
A + B → CΔH = (±) #
Where {A, B, C} are the usual agents of a chemical equation with coefficients and “(±) #” is a positive or negative numerical value, usually with units of kJ.
please mark as brainliest
For the answer to the questions above,
a) Ag2CO3(s) => Ag2O(s)+CO2(g)
<span>b) Cl2(g)+2(KI)(aq) => I2(s)+2(KCl)(aq) (coefficients are for balanced equation) </span>
<span>net ionic is Cl2(g)+2I- => I2(s)+2Cl-(aq) </span>
<span>c) I2(s)+3(Cl2)(g)=>2(ICl3)
</span>I hope I helped you with your problem
Answer:
C. because the 4s orbital is at a lower energy level