Answer:
CH₃CH₂CH₂COOH > CH₃CH₂COOH > ClCH₂CH₂COOH > ClCH₂COOH
Explanation:
Electron-withdrawing groups (EWGs) increase acidity by inductive removal of electrons from the carboxyl group.
Electron-donating groups (EDGs) decrease acidity by inductive donation of electrons to the carboxyl group.
- The closer the substituent is to the carboxyl group, the greater is its effect.
- The more substituents, the greater the effect.
- The effect tails off rapidly and is almost zero after about three C-C bonds.
CH₃CH₂-CH₂COOH — EDG — weakest — pKₐ = 4.82
CH₃-CH₂COOH — reference — pKₐ = 4.75
ClCH₂-CH₂COOH — EWG on β-carbon— stronger — pKₐ = 4.00
ClCH₂COOH — EWG on α-carbon — strongest — pKₐ = 2.87
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Answer:
(a)57.48 percent (b) 29.45 percent
Explanation:
copper(II) bromide is 29.45 percent copper and 71.54 percent bromine. so the first element percentage composition is always the percentage composition of the compound.
that goes same with sodium hydroxide. it is 57.48 percent sodium, 40 percent oxygen, and 2.52 percent hydrogen.
We have that the the molarity of methanol in the solution is mathematically given as
Morality=7.91mol/l
<h3>
Chemical Reaction</h3>
Question Parameters:
An <u>aqueous </u><em>solution </em>of methanol (MM = 32.04 g/mol)
A molality of 8.83 m and a density of 1.15 g/mL.
Generally the equation for the is mathematically given as

where
Mass of solution=(100+282.2)
Mass of solution=1289.9
Volume=1289.9/1.15
Volume=1.115L
Therefore

Morality=8.83/1.115
Morality=7.91mol/l
For more information on Chemical Reactionvisit
brainly.com/question/11231920