Answer:
ok.. what is your question??? confused
Answer:
See below.
Step-by-step explanation:
Ethers react with HI at high temperature to produce an alky halide and an alcohol.
R-OR' + HI ⟶ R-I + H-OR'
<em>Benzylic ethers</em> react by an Sₙ1 mechanism by forming the stable benzyl cation.
- PhCH₂-OR + HI ⟶ PhCH₂-O⁺(H)R + I⁻ Protonation of the ether
- PhCH₂-O⁺(H)R ⟶ PhCH₂⁺ + HOR Sₙ1 ionization of oxonium ion
- PhCH₂⁺ + I⁻ ⟶ PhCH₂-I Nucleophilic attack by I⁻
If there is excess HI, the alcohol formed in Step 2 is also converted to an alkyl iodide:
ROH +HI ⟶ R-I + H-OH
Thus, benzyl ethyl ether reacts to form benzyl iodide (a) and ethanol (b).
The ethanol reacts with excess HI in an Sₙ2 reaction to form ethyl iodide (c).
Answer:
It could be C. Calcuim Chloride.
Explanation:
Answer:
Why are redox reactions used in batteries? The attraction between charged ions releases energy. The movement of electrons creates an electric current. The reactions are extremely exothermic, producing an electric current.
Explanation:
Why are redox reactions used in batteries?
The attraction between charged ions releases energy.
The movement of electrons creates an electric current.
The reactions are extremely exothermic, producing an electric current.
The reactions are extremely endothermic, inducing the movement of electrons.