The answer is 6 moles of water will be produced.
<h3>
Answer:</h3>
150000 J
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Thermodynamics</u>
Specific Heat Formula: q = mcΔT
- <em>q</em> is heat (in J)
- <em>m</em> is mass (in g)
- <em>c</em> is specific heat (in J/g °C)
- ΔT is change in temperature (in °C or K)
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] <em>m</em> = 225 g
[Given] <em>c</em> = 4.184 J/g °C
[Given] ΔT = 133 °C - -26.8 °C = 159.8 °C
[Solve] <em>q</em>
<u>Step 2: Solve for </u><em><u>q</u></em>
- Substitute in variables [Specific Heat Formula]: q = (225 g)(4.184 J/g °C)(159.8 °C)
- Multiply: q = (941.4 J/°C)(159.8 °C)
- Multiply: q = 150436 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
150436 J ≈ 150000 J
Topic: AP Chemistry
Unit: Thermodynamics
Book: Pearson AP Chemistry
Answer:
NH4+
Explanation:
NH4+ is the acid and NH3 is the base, so NH4+ is the stronger acid.
<span>The only scenario that
will allow you to reach an equilibrium mixture involving these chemicals is to
place NH3 into a sealed vessel. This reaction requires pressures between 2100,
3600 psi, and temperatures between 300 and 550 degree Celsius. With this given
temperature and pressure, the ammonia naturally decomposes into nitrogen and
hydrogen gas at the same rate. When this happen, the concentrations of these
chemicals become constant and the system is said to be at equilibrium.</span>