Copper (I) oxidation state is 1 Cu2So4
copper (II) oxidation state is +2 CuSo4
copper (i) also give up one electron so you need two of them to react with the sulfate ion (which has charge of -2)
and also all metallic ions have an multiple oxidation levels corresponding to the number of electrons they can exchange or loose
Hope this helps
Group 1A(1), the alkali metals, includes lithium, sodium, and potassium. Group 7A(17) the halogens, includes chlorine, bromine, and iodine. hope this helps:)
Answer:
1.772 gram is the approximate answer
Explanation:
molecular mass of AlCl3 is 132 g per mole and of Al(OH)3 is 78 g per mole
the reaction is
AlCl3 + 3 NaOH ---> Al(OH)3 + 3 NaCl
from the reaction it is clear that 1 mole AlCl3 makes 1 mole Al(OH)3
implies 132g AlCl3 gives 78g Al(OH)3
Implies 3g AlCl3 gives
3*122/78 = 1.772 grams
Answer:
36.55kJ/mol
Explanation:
The heat of solution is the change in heat when the KNO3 dissolves in water:
KNO3(aq) → K+(aq) + NO3-(aq)
As the temperature decreases, the reaction is endothermic and the molar heat of solution is positive.
To solve the molar heat we need to find the moles of KNO3 dissolved and the change in heat as follows:
<em>Moles KNO3 -Molar mass: 101.1032g/mol-</em>
10.6g * (1mol/101.1032g) = 0.1048 moles KNO3
<em>Change in heat:</em>
q = m*S*ΔT
<em>Where q is heat in J,</em>
<em>m is the mass of the solution: 10.6g + 251.0g = 261.6g</em>
S is specififc heat of solution: 4.184J/g°C -Assuming is the same than pure water-
And ΔT is change in temperature: 25°C - 21.5°C = 3.5°C
q = 261.6g*4.184J/g°C*3.5°C
q = 3830.87J
<em>Molar heat of solution:</em>
3830.87J/0.1048 moles KNO3 =
36554J/mol =
<h3>36.55kJ/mol</h3>
<em />
<em>Acetic acid, HC2H3O2</em>
First, calculate for the molar mass of acetic acid as shown below.
M = 1 + 2(12) + 3(1) + 2(16) = 60 g
Then, calculating for the percentages of each element.
<em> Hydrogen:</em>
P1 = ((4)(1)/60)(100%) = <em>6.67%</em>
<em> Carbon:</em>
P2 = ((2)(12)/60)(100%) = <em>40%</em>
<em>Oxygen</em>
P3 =((2)(16) / 60)(100%) = <em>53.33%</em>
<em>Glucose, C6H12O6</em>
The molar mass of glucose is as calculated below,
6(12) + 12(1) + 6(16) = 180
The percentages of the elements are as follow,
<em> Hydrogen:</em>
P1 = (12/180)(100%) = <em>6.67%</em>
<em>Carbon:</em>
P2 = ((6)(12) / 180)(100%) = <em>40%</em>
<em>Oxygen:</em>
P3 = ((6)(16) / 180)(100%) = <em>53.33%</em>
b. Since the empirical formula of the given substances are just the same and can be written as CH2O then, the percentages of each element composing them will just be equal.