<span>atomic weights: Al = 26.98, Cl = 35.45
In this reaction; 2Al = 53.96 and 3Cl2 = 212.7
Ratio of Al:Cl = 53.96/212.7 = 0.2537 that is approximately four times the mass Cl is needed.
Step 2:
(a) Ratio of Al:Cl = 2.70/4.05 = 0.6667
since the ratio is greater than 0.2537 the divisor which is Cl is not big enough to give a smaller ratio equal to 0.2537.
so Cl is limiting
(b)since Cl is the limiting reactant 4.05g will be used to determine the mass of AlCl3 that can be produced.
From Step 1:
212.7g of Cl will produce 266.66g AlCl3
212.7g = 266.66g
4.05g = x
x = 5.08g of AlCl3 can be produced
(c)
Al:Cl = 0.2537
Al:Cl = Al:4.05 = 0.2537
mass of Al used in reaction = 4.05 x 0.2537 = 1.027g
Excess reactant = 2.70 - 1.027 = 1.67g
King Leo · 9 years ago</span>
Answer: high iridium levels in a 66- million-year-old clay layer in Denmark and Italy
Explanation:
A hydrogen bond<span> is the electrostatic attraction between two polar groups that occurs when a </span>hydrogen<span> (H) atom covalently bound to a highly electronegative atom such as nitrogen (N), oxygen (O), or fluorine (F) experiences the electrostatic field of another highly electronegative atom nearby. examples h20</span>
Answer:
.Heat energy can be transferred from one object to another. The transfer or flow due to the difference in temperature between the two objects is called heat.
Explanation:
The transfer of thermal energy is called heat. In this process, thermal energy moves through a substance. For example, an ice cube has heat energy and so does a glass of lemonade.
<span>The correct answer is that an ionic bond forms between charged particles. To form this bond, the particles transfer valence electrons (those in the outermost orbit). Specifically, in ionic bonding, the metal atom loses its electrons (thus becoming positive) and the nonmetal atom gains electrons (thus becoming negative).</span>