Answer:
Explanation:
Equation of the reaction:
NaOH + HCl --> NaCl + H2O
Volume of HCl = 5 ml
Molar concentration = 1 M
Number of moles = molar concentration * volume
= 1 * 0.005
= 0.005 mol of HCl
By stoichiometry, 1 mole of HCl completely neutralizes 1 mole of NaOH
Therefore, number of moles of NaOH = 0.005 mol
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
NaOH --> Na+ + OH-
Mass = molar mass * number of moles
= 40 * 0.005
= 0.2 g of Na+
Answer:
Sedimentary rock, rock formed at or near Earth's surface by the accumulation and lithification of sediment by the precipitation from solution at normal surface temperatures
Explanation:
1. Solid
2. Liquid
3. Gas
4. Plasma
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm