1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
2 years ago
13

A single-phase 60-Hz overhead power line is symmetrically supported on a horizontal cross arm. Spacing between the centers of th

e conductors acing between the centers of the conductors (say, a and b) is 2.5 m. A telephone line is also symmetrically supported on a horizontal cross arm 1.8 m directly below the power line. Spacing between the centers of these conductors (say, c and d) is 1.0 m.
4 x 10^7 ln âDad. Dln/Dnk. Dtet

where, for example, Dud denotes the distance in meters between conductors a and.

a. Hence, compute the mutual inductance per kilometer between the power line and the telephone line.
b. Find the GO-Hz voltage per kilometer induced in the telephone line when the power line carries 150 A.
Physics
1 answer:
pentagon [3]2 years ago
5 0

Complete question is;

A single-phase 60-Hz overhead power line is symmetrically supported on a horizontal cross arm. Spacing between the centers of the conductors acing between the centers of the conductors (say, a and b) is 2.5 m. A telephone line is also symmetrically supported on a horizontal cross arm 1.8 m directly below the power line. Spacing between the centers of these conductors (say, c and d) is 1.0 m.

The mutual inductance per unit length between circuit a-b and circuit c-d is given as 4 x 10^(-7) ln √((D_ad × D_bc)/(D_ac × D_bd)) H/m

where, for example, D_ad denotes the distance in meters between conductors a and d.

a. Hence, compute the mutual inductance per kilometer between the power line and the telephone line.

b. Find the 60-Hz voltage per kilometer induced in the telephone line when the power line carries 150 A

Answer:

A) M = 1.01 × 10^(-4) H/km

B) v_cd = 5.712 V/km

Explanation:

A) From the distances given in the question, we can deduce that;

D_ac = √(((2.5/2) - (1/2))² + 1.8²)

D_ac = 1.95 m

Also;

D_ad = √(((2.5/2) + (1/2))² + 1.8²)

D_ad = 2.51 m

I_a and I_b are put of phase by 180°. Thus, due to a and b, the flux linkages to c and d is given as;

φ_cd = 4 x 10^(-7)I_a( ln (2.51/1.95))

Mutual inductance per km is given as;

M = φ_cd/I_a

Thus;

M = 4 x 10^(-7)( ln (2.51/1.95))

M = 1.01 × 10^(-7) H/m

Per km;

M = 1.01 × 10^(-7) × 1000

M = 1.01 × 10^(-4) H/km

B) voltage per km is gotten by;

v_cd = ωMI

Now, ω = 2πf = 2π × 60 = 377 rad/s

Thus;

v_cd = 377 × 1.01 × 10^(-4) × 150

v_cd = 5.712 V/km

You might be interested in
Compute your average velocity in the following two cases: (a) You walk 50.2 m at a speed of 2.21 m/s and then run 50.2 m at a sp
Readme [11.4K]

Answer:

a) 2.87 m/s

b) 3.23 m/s

Explanation:

The avergare velocity can be found dividing the length traveled d by the total time t.

a)

For the first part we easily know the total traveled length which is:

d = 50.2 m + 50.2 m = 100.4 m

The time can be found dividing the distance by the velocity:

t1 = 50.2 m / 2.21 m/s = 22.7149 s

t2 = 50.2 m / 4.11 m/s = 12.2141 s

t = t1 +t2 = 34.9290 s

Therefore, the average velocity is:

v = d/t =2.87 m/s

b)

Here we can easily know the total time:

t = 1 min + 1.16 min = 129.6 s

Now the distance wil be found multiplying each velocity by the time it has travelled:

d1 = 2.21 m/s * 60 s = 132.6 m

d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m

d = 418.656 m

Therefore, the average velocity is:

v = d/t =3.23 m/s

5 0
3 years ago
What is the relationship between these animals (Predator-Prey) (Parisite-Host) (mutualism) or (commensalism)
ohaa [14]
1.commensalism
2. pred-prey
3. parasite-host
4.commensalism
8 0
3 years ago
According to recent typical test data, a Ford Focus travels 0.240 mi in 19.3 s, starting from rest. The same car, when braking f
Anit [1.1K]

Answer:

Explanation:

a )

While breaking initial velocity u = 62.5 mph

= 62.5 x 1760 x 3 / (60 x 60 )  ft /s

= 91.66 ft / s

distance trvelled s = 150 ft

v² = u² - 2as

0 = 91.66²  - 2 a x 150

a = - 28 ft / s²

b ) While accelerating initial velocity u = 0

distance travelled s = .24 mi

time = 19.3 s

s = ut + 1/2 at²

s is distance travelled in time t with acceleration a ,

.24 = 0 + 1/2 a x 19.3²

a = .001288 mi/s²

= 2.06 m /s²

c )

If distance travelled s = .25 mi

final velocity v = ? a = .001288 mi / s²

v² = u² + 2as

= 0 + 2 x .001288 x .25

= .000644

v = .025 mi / s

= .0025 x 60 x 60 mi / h

= 91.35 mph .

d ) initial velocity u = 59 mph

= 86.53 ft / s

final velocity = 0

acceleration = - 28 ft /s²

v = u - at

0 = 86.53 - 28 t

t = 3 sec approx .

4 0
2 years ago
a man hikes 6.6 km north along a straight path with an average velocity of 4.2 km/h to the north. he rest at a bench for 15 min.
SSSSS [86.1K]

Answer:

2.6h

Explanation:

I attached the image below of the work hope you can see it. Hope this helps!

6 0
2 years ago
Which property of table salt is also a property of other ionic compounds
Jet001 [13]

s alluded to in the other answers, salt refers to any ionic compound that doesn't have “oxides” in it. Table salt is sodium chloride. Going down the periodic table, the first column contains lithium, sodium, potassium, rubidium, cesium, and francium. This group (alkali metals) of atoms (and their corresponding positive ions) gets larger in the order shown above. Therefore, their ionic bonds with chloride (or any nonmetal) gets smaller. The trend of their corresponding compounds is a decreasing hardness, decreasing melting point, decreasing boiling point, and decreasing thermal stability. These are the major periodic trends of these corresponding compounds. Other metal ions generally have higher positive charges on them. This makes the ionic bonds considerably larger and you can probably surmise most of their corresponding properties listed above. However, the details of their lattice structures may cause the overall trend to vary.

3 0
3 years ago
Read 2 more answers
Other questions:
  • A circle in the xy-plane has diameter 9.8 cm. A magnetic field of strength 3.4 T is oriented at an angle of 23° to the z-axis, a
    15·1 answer
  • Sally travels by car from one city to another. She drives for 26.0 min at 83.0 km/h, 52.0 min at 41.0 km/h, and 45.0 min at 60.0
    8·1 answer
  • What is temperature?
    15·1 answer
  • which of these types of radiation do you suppose we should fear the most if administered internally? •gamma rays •neutrons •alph
    6·1 answer
  • A small sphere of radius R is arranged to pulsate so that its radius varies in simple harmonic motion between a minimum of R−x a
    13·1 answer
  • One speed skater starts across a frozen lake at an average speed of 8 m/s. Ten seconds later, a second speed skater starts from
    9·1 answer
  • Swinging a tennis racket against a ball is an example of a third class lever. Please select the best answer from the choices pro
    13·2 answers
  • What is the function of law
    7·1 answer
  • A stunt car traveling at 20 m/s flies horizontally off a cliff and lands 39.2 m from the base of the cliff. How tall is the clif
    5·1 answer
  • Consider the following arrangement with a frictionless/massless pulley. Determine the force F required to move block A if the co
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!