The correct answer is oil
Answer:
The amount of HC₂H3₃2(aq) in the flask after the addition of 5.0mL of NaOH(aq) compared to the amount of HC₂H₃O₂(aq) in the flask after the addition of 1.0mL is much smaller because more HC₂H₃O₂(aq) is required to react with 5.0 mL NaOH than with 1.0 mL NaOH.
Explanation:
Equation of the reaction between acetic acid, HC₂H₃O₂(aq) and sodium hydroxide, NaOH(aq) is given below:
CH₃COOH (aq) + NaOH (aq) ----> CH₃COONa (aq) + H₂O
The equation of the reaction shows that acetic acid andsodium hydroxide will react in a 1:1 ratio
Since the concentration of NaOH was not given, we can assume that the concentration is 0.01 M
Moles of NaOH in 5.0 mL of 0.01 M NaOH = 0.01 × 5/1000 = 0.00005 moles
Moles of NaOH in 1.0 mL of 0.01 M NaOH = 0.01 ×1/1000 = 0.0001 moles
Ratio of moles of NaOH in 5.0 mL to 1.0 mL = 0.00005/0.00001 = 5
There are five times more moles of NaOH in 5.0 mL than in 1.0 mL and this means that 5 times more the quantity of HC₂H₃O2(aq) required to react with 1.0 mL NaoH is needed to react with 5.0 mL NaOH.
Therefore, the amount of HC₂H₃O2(aq) in the flask after the addition of 5.0mL of NaOH(aq) compared to the amount of HC₂H₃O₂(aq) in the flask after the addition of 1.0mL is much smaller because more HC₂H₃O₂(aq) is required to react with 5.0 mL NaOH than with 1.0 mL NaOH.
Explanation:
The pressure exerted by vapors or gas on the surface of a liquid is known as vapor pressure.
This means that weaker is the intermolecular forces present in a substance more easily it can form vapors. As a result, it will have high vapor pressure.
As substance B has high vapor pressure which means that it has weak intermolecular forces.
Also, stronger is the intermolecular forces present in a substance more will be its boiling point. Hence, more energy or temperature is required to break the bonds. Hence, substance A has higher boiling point and high heat of vaporization.
When surrounding pressure is less than or equal to its vapor pressure then substance B boils into the gas phase. Hence, substance B will be a gas at 300 mm Hg.
Therefore, we can conclude that characteristics of the two substances will be as follows.
(a) Substance B - has weaker intermoclcular
(b) Substance A - has a higher boiling point
(c) Substance B - is a gas at 300 mm Hg
(d) Substance A - has a higher heat of vaporization