So your finding acceleration first which is 30m/s divides by 6 seconds equals 5m/s^s and then multiply that by 1,400 kg and you have net force which is 7,000N
An electrical <span>current is </span>caused<span> by </span>flow<span> of free electrons from one atom to another. </span>
Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
Answer:
Thermal/Heat energy, kinetic energy, light energy, & Electromagnetic energy
a₀). You know ...
-- the object is dropped from 5 meters
above the pavement;
-- it falls for 0.83 second.
a₁). Without being told, you assume ...
-- there is no air anyplace where the marshmallow travels,
so it free-falls, with no air resistance;
-- the event is happening on Earth,
where the acceleration of gravity is 9.81 m/s² .
b). You need to find how much LESS than 5 meters
the marshmallow falls in 0.83 second.
c). You can use whatever equations you like.
I'm going to use the equation for the distance an object falls in
' T ' seconds, in a place where the acceleration of gravity is ' G '.
d). To see how this all goes together for the solution, keep reading:
The distance that an object falls in ' T ' seconds
when it's dropped from rest is
(1/2 G) x (T²) .
On Earth, ' G ' is roughly 9.81 m/s², so in 0.83 seconds,
such an object would fall
(9.81 / 2) x (0.83)² = 3.38 meters .
It dropped from 5 meters above the pavement, but it
only fell 3.38 meters before something stopped it.
So it must have hit something that was
(5.00 - 3.38) = 1.62 meters
above the pavement. That's where the head of the unsuspecting
person was as he innocently walked by and got clobbered.