For us to accurately determine what compound
this is, additional info must be given. However I can suggest two compounds
which have molecular mass of about 30.07 g/mol.
1. It could be NO or nitric oxide.
The molecular mass is 16 + 14= 30 g/mol
But if we search the exact weight, it is 30.01 g/mol
2. It could also be (CH3)2 or ethane.
The molecular mass is 2*12+ 6*1= 30 g/mol
But if we search the exact weight, it
is 30.07 g/mol.
<span>So we could say it more likely to to be (CH3)2 </span>
Answer: There was a lower concentration of salt in the water than in the cells.
Explanation:
Osmosis is a process in which the solvent flow from a solution of low concentration to a solution of high concentration through a semi-permeable membrane.
When the red blood cells are put in water that contained salt and the red blood cells burst after some time.
This means the solvent has moved from outside to inside the cell and this is possible only when the concentration of solute is high inside the cell than outside. That means the solution has low concentration of solute as compared to the cell and was a hypotonic solution.
<span>The relative strength of intermolecular forces such as ionic, hydrogen bonding, dipole-dipole interaction and Vander Waals dispersion force affects the boiling point of a compound. For this case, the longer the chain the higher the boiling point.
</span>CH, CH4, C4H10, C8H18, C16H34
Hope this answers the question. Have a nice day.
<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:
We are given:
Mass of = 39.963998 u
Mass of = 39.962591 u
To calculate the mass defect, we use the equation:
Putting values in above equation, we get:
To calculate the energy released, we use the equation:
(Conversion factor: )
Hence, the energy released in the given nuclear reaction is 1.3106 MeV.
Given the percentage composition of HC as C → 81.82 % and H → 18.18 %
So the ratio of number if atoms of C and H in its molecule can will be:
C : H = 81.82 12 : 18.18 1 C : H = 6.82 : 18.18 = 6.82 6.82 : 18.18 6.82 = 1 : 2.66 ≈ 3 : 8
So the Empirical Formula of hydrocarbon is:
C 3 H 8
As the mass of one litre of hydrocarbon is same as that of C O 2 The molar mass of the HC will be same as that of C O 2 i.e 44 g mol
Now let Molecular formula of the HC be ( C 3 H 8 ) n
Using molar mass of C and H the molar mass of the HC from its molecular formula is:
( 3 × 12 + 8 × 1 ) n = 44 n So 44 n = 44 ⇒ n = 1
Hence the molecular formula of HC is C 3 H 8
Does that help?