Answer:
Standard form: (x+3)^2=1/2(y+3)
f(1) = 29
f(-1) = 5
Explanation:
The standard form of a parabola with a directrix that is horizontal is
(x-h)=4(P)(y-k)
Using the vertex form, find the vertex, foci, and the distance from the vertex to the focus or directrix.
It's easier to use the vertex form to plug in values for x.
f(1) = 2((1)+3)^2-3
f(1) = 29
f(-1) = 2((-1)+3)^2-3
f(-1) = 5
Answer: 1s²2s²2p³ or it can also be 3s²2p³
the correct answer is dissapate...but it is
not here so i think relativly the answer is destroy
Answer:
5.8 g
Explanation:
Molecular weight in Daltons is equivalent to the molecular weight in grams per mole.
The amount of NaCl required is calculated as follows:
(2 mol/L)(50 mL)(1 L/1000 mL) = 0.1 mol
This amount is converted to grams using the molar mass (58 g/mol).
(0.1 mol)(58 g/mol) = 5.8 g
Answer: The first isotope has a relative abundance of 79% and last isotope has a relative abundance of 11%
Explanation: Given that the average atomic mass(M) of magnesium
= 24.3050amu
Mass of first isotope (M1) = 23.9850amu
Mass of middle isotope (M2)=24.9858amu
Mass of last isotope(M3)= 25.9826amu
Total abundance = 1
Abundance of middle isotope = 0.10
Let abundance of first and last isotope be x and y respectively.
x+0.10+y =1
x = 0.90-y
M = M1 × % abundance of first isotope + M2 × % of middle isotope +M3 ×% of last isotope
24.03050= 23.985× x + 24.9858 ×0.10 + 25.9826×y
Substitute x= 0.90-y
Then
y = 0.11
Since y=0.11, then
x= 0.90-0.11
x=0.79
Therefore the relative abundance of the first isotope = 11% and the relative abundance of the last isotope = 79%