The correct answer is:
Work is negative, the environment did work on the object, and the energy of the system decreases.
In fact, the work-energy theorem states that the work done by the system is equal to its variation of kinetic energy:

In this problem, the variation of kinetic energy
is negative (because the final velocity is less than the initial velocity), so the work is negative, and this means that the environment did work on the object, and its energy decreased.
Answer:
The ratio is 9.95
Solution:
As per the question:
Amplitude, 
Wavelength, 
Now,
To calculate the ratio of the maximum particle speed to the speed of the wave:
For the maximum speed of the particle:

where
= angular speed of the particle
Thus

Now,
The wave speed is given by:

Now,
The ratio is given by:


Johann Strauss II
hope this helps
Answer:

Explanation:
Impulse-momentum theorem states that impulse is equal to the change of momentum:
(1)
with pf the final momentum and pi the initial momentum. Knowing that momentum is mass (m) times velocity (1) is:

It's important to note that we're dealing with vector quantities so direction matters. If we choose towards the floor positive direction then the initial velocity is positive and the final velocity is negative, so:


So, the impulse delivered to the floor is 