Answer:
a) V = k 2π σ (√(b² + x²) - √ (a² + x²))
,
b) E = - k 2π σ x (1 /√(b² + x²) - 1 /√(a² + x²))
Explanation:
a) The expression for the electric potential is
V = k ∫ dq / r
For this case, consider the disk formed by a series of concentric rings of radius r and width dr, the distance of each ring to point P
R = √(x² + r²)
The charge on a ring is
σ = dq / dA
The area of a ring is
A = π r
dA = 2π r dr
So the charge is
dq = σ 2π r dr
We substitute
V = k σ 2pi ∫ r dr / √(r² + x²)
We integrate
V = k 2π σ √(r² + x²)
We evaluate from the lower limit r = a to the upper limit r = b
V = k 2π σ (√(b² + x²) - √ (a² + x²))
b) the electric field and the potential are related
E = - dV / dx
E = - k 2π σ (1/2 2x /√(b² + x²) - ½ 2x /√(a² + x²))
E = - k 2π σ x (1 /√(b² + x²) - 1 /√(a² + x²))
Given that they are all on the same bus that is travelling in a straight line at the same velocity, when Elle throws the ball directly upwards, the ball will simply fall back to her. This is because the bus, Elle, and the ball are all travelling in the same direction and at the same speed. Among the choices, the correct answer is A.
Use Newton's second law and the free body diagram to determine the net force and acceleration of an object. In this unit, the forces acting on the object were always directed in one dimension.
The object may have been subjected to both horizontal and vertical forces but there was no single force directed both horizontally and vertically. Moreover, when free-body diagram analysis was performed, the net force was either horizontal or vertical, never both horizontal and vertical.
Times have changed and we are ready for situations involving two-dimensional forces. In this unit, we explore the effects of forces acting at an angle to the horizontal. This makes the force act in two dimensions, horizontal and vertical. In such situations, as always in situations involving one-dimensional network forces, Newton's second law applies.
Learn more about Newton's second law here:-brainly.com/question/25545050
#SPJ9
Answer:
atoms cannot go bad
Explanation:
Because they stay alive and get good nutriants