It will act upon a buoyant force on the magnitude of which is equal to weight of the fluid
<span>The number of the group identifies the column of the standard periodic table in which the element appears.</span>
Group 1 contains the alkali metals ( lithium<span> (</span>Li<span>), </span>sodium<span> (</span>Na<span>), </span>potassium<span> (</span>K<span>), </span>rubidium<span> (</span>Rb<span>), </span>caesium<span> (</span>Cs<span>), and </span>francium(Fr).)<span>
Group 2 contains the alkaline earth metals (</span> beryllium<span> (</span>Be),magnesium<span> (</span>Mg<span>), </span>calcium<span> (</span>Ca<span>), </span>strontium<span> (</span>Sr<span>), </span>barium<span> (</span>Ba<span>) and </span>radium<span> (</span>Ra<span>) )
Group 3: </span><span> Scandium (Sc) and yttrium (Y) </span>
A scientist would write that number as 1.49 x 10⁸ kilometers .
(Or, if the scientist is in France or the UK, he might write it as 1.49 x 10⁸ kilometres .)
Answer:
D. Because they are using space technology on a shirt so people can wear it on earth as well
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω