Answer:
Mass of the car is 1576 kg.
Explanation:
Let the mass of the car be
kg.
Given:
Initial velocity of the car is, 
As the car stops, final velocity of the car is, 
Change in momentum is, 
Now, we know that, momentum is given as the product of mass and velocity.
So, change in momentum is given as:

Therefore, the mass of the car is 1576 kg.
Answer:
We know that force applied per unit area is called pressure.
Pressure = Force/ Area
When force is constant than pressure is inversely proportional to area.
1- Calculating the area of three face:
A1 = 20m x 10 m =200 Square meter
A2 = 10 mx 5 m = 50 Square meter
A3 = 20m x 5 m = 100 Square meter
Therefore A1 is maximum and A2 is minimum.
2- Calculate pressure:
P = F/ A1 = 30 / 200 = 0.15 Nm⁻² ( minimum pressure)
P = F / A2 = 30 / 50 = 0.6 Nm⁻² ( maximum pressure)
Hence greater the area less will be the pressure and vice versa.
Here are the observations
<u>S</u><u>u</u><u>g</u><u>a</u><u>r</u><u>:</u><u>-</u>
- Sugar is soluble in water
- so It will dissolve in water .
<u>C</u><u>o</u><u>r</u><u>n</u><u> </u><u>s</u><u>y</u><u>r</u><u>u</u><u>p</u><u>:</u><u>-</u>
- Corn syrup is also basically a sugar.
- It will dissolve in water too .
- If we shake the mixture in glass then corn syrup will be dissolved.
<u>O</u><u>i</u><u>l</u><u>:</u><u>-</u>
- Oil is not soluble in water
- Hence it won't dissolve in water.
- It will float over water and make two layers
Answer:
a) 4.31 m/s²
b) 215.5 m
Explanation:
a) According to Newton's first law of motion
The net force applied to particular mass produced acceleration, a, according to
F = ma
F = 140 N
m = 32.5 kg
a = ?
140 = 32.5 × a
a = 140/32.5 = 4.31 m/s²
b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s
u = initial velocity of the probe = 0 m/s (since it was initially at rest)
a = 4.31 m/s²
t = 10 s
s = distance travelled = ?
s = ut + at²/2
s = 0 + (4.31×10²)/2 = 215.5 m
Answer:
The width of the central bright fringe on the screen is observed to be unchanged is 
Explanation:
To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes. Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

Where,
w = width
wavelength
m is an integer, m = 1, 2, 3...
We here know that as
as w are constant, then

We need to find
, then

Replacing with our values:


Therefore the width of the central bright fringe on the screen is observed to be unchanged is 