Yes thank u teehee
.................... x
Explanation:
The given data is as follows.
m = 5000 kg, h = 800 km = 
, r = R + h = 
kg, G = 
As we know that,

v = 
And, it is known that formula to calculate angular velocity is as follows.

v = 
= 
= 
Thus, we can conclude that speed of the satellite is
.
Answer:
4 Ohms
Explanation:
Apply the formula:
Voltage = I (current) . Resistance
You can change it the way you want to use for your purpose.
In this case...
R = V/I
R = 12/3
R = 4 Ohms (Ohm is the unit of measurement of eletrical resistance)
Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.
Answer:
8.89288275 m/s
Explanation:
F = Tension = 54 N
= Linear density of string = 5.2 g/m
A = Amplitude = 2.5 cm
Wave velocity is given by

Frequency is given by

Angular frequency is given by

Maximum velocity of a particle is given by

The maximum velocity of a particle on the string is 8.89288275 m/s