a.
The work done by a constant force along a rectilinear motion when the force and the displacement vector are not colinear is given by:

where F is the magnitude of the force, theta is the angle between them and d is the distance.
The problen gives the following data:
The magnitude of the force 750 N.
The angle between the force and the displacement which is 25°
The distance, 26 m.
Plugging this in the formula we have:

Therefore the work done is 17673 J.
b)
The power is given by:

the problem states that the time it takes is 6 s. Then:

Therefore the power is 2945.5 W
Answer:
The answer to your question is 636.6 ft
Explanation:
Data
base = 425 ft
angle = 39°
See the picture below
1.- Divide the triangle to get two right triangles.
Now the superior angle will measure 19.5° and the opposite side will measure 212.5 ft
2.- Use the trigonometric function sine to find the hypotenuse
sin 19.5 = 212.5/hyp
solve for hyp
hyp = 212.5 / sin 19.5
Result
hyp = 212.5/ 0.333
hyp = 636.6 ft
Answer:
Because of the formula 
Explanation:
In this problem we are describing two different processes:
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
- Nuclear fusion occurs when two (or more) light nuclei fuse together producing a heavier nucleus
In both cases, the total mass of the final products is smaller than the total mass of the initial nuclei.
According to Einsten's formula, this mass difference has been converted into energy, as follows:

where:
E is the energy released in the reaction
is the mass defect, the difference between the final total mass and the initial total mass
is the speed of light
From the formula, we see that the factor
is a very large number, therefore even if the mass defect
is very small, nuclear fusion and nuclear fission release huge amounts of energy.
Answer:
distance = 112 miles
Explanation:
its 12 miles every 0.6 in a hour