Answer:
(a) The angle of projection is 63 degree.
(b) The velocity of projection is 24.5 m/s.
Explanation:
Height, h = 1 m
horizontal distance, d = 50 m
time, t = 4.5 s
Let the initial velocity is u and the angle is A.
(a) Horizontal distance = horizontal velocity x time
50 = u cos A x 4.5
u cos A = 11.1 .....(1)
Use second equation of motion in vertical direction

Divide (2) by (1)
tan A = 1.97
A = 63 degree
(b) Substitute the value of A in equation (2)
u x sin 63 = 21.8
u = 24.5 m/s
The acceleration of the box up the ramp is 9.65 m/s².
<h3>
What is the magnitude of acceleration of the box?</h3>
The magnitude of the acceleration of the box is calculated by applying Newton's second law of motion as shown below;
F(net) = ma
where;
- m is the mass of the box
- a is the acceleration of the box
The net force on the box is calculated as follows;
F(net) = F - Ff
F(net) = F - μmgcosθ
where;
- θ is the inclination of the plane
- μ is coefficient of friction
F(net) = 170 - (0.3 x 15 x 9.8 x cos55)
F(net) = 144.7
The acceleration of the box is calculated as;
a = F(net) / m
a = (144.7) / (15)
a = 9.65 m/s²
Thus, the acceleration of the box up the ramp is 9.65 m/s².
Learn more about acceleration here: brainly.com/question/14344386
#SPJ4
Answer:
I believe its C: Secretary of War. I hope this helped :)
Explanation:
Answer:
All fraction of kinectic energy is lost to barrel of a spring gun of mass 1.8 kg
Explanation:
A ball of mass 0.50 kg is fired with velocity 160 m/s ...
The kinetic energy is given by 1/2mv²
Kinectic energy of the ball = 1/2 *0.5*160²
Kinectic energy = 1/4 *25600
Kinectic energy = 6400 joules.
If no energy is lost to fiction, and the ball sticks to a barrel of a spring gun of mass 1.8 kg with initial velocity zero, all kinetic energy is lost to the barrel of a spring gun of mass 1.8 kg.
Six centimeters equal to about two inches