Answer:
Potential difference will be 151.9 volt
Explanation:
We have given capacitance of the capacitor 
Voltage V = 49 Volt
Dielectric constant K = 3.1
We have to find the potential difference
We know that when a dielectric medium is introduced then p[otential difference is increases by k times
As the dielectric constant k = 3.1
So potential difference will be = 3.1×49 = 151.9 volt
Answer:
C = 0.0125 m/s⁴. The calculation procedure can be found in the attachment below. The concept of motion along a straight line with constant acceleration has been applied to solve the problem.
Explanation:
The sign convention chosen in this problem solution is upwards as positive and downwards negative. The equation of motion v = u + at has been used to calculate the constant C as only one unknown is contained in this equation. This is so because we have been given the initial velocity, the acceleration and the time taken. To solve future problems of this kind, first thing to check for is an equation of motion with the least number of unknown. This helps to reduce the complexity of the problem solution.
Answer:1384 Hz
Explanation:
Given
wavelength
=0.25 m
Temperature T
at
velocity of sound is 346 m/s
and we know



f=1384 Hz
The best tree stand safety harness is the Hunter Safety System Hybrid Flex Safety Harness, with its awesome ElimiShield Scent Control Technology.
Moreover, These stands are designed to be attached directly to the tree. Hunters using a fixed or suspended stand must choose a method of climbing up and down from the platform. The safest and most used method is sectional ladders.
You can learn more about this at:
brainly.com/question/28335498#SPJ4
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g