Answer:
C. Trp D. Phe E. Tyr
Explanation:
The concentration of a protein has a direct relation with absorbance of the protein in a UV spectrophotometer. The formula which relates concentration with absorbance is described as under:
A = ∈ x c x l
where, A = Absorbance
∈ = Molar extinction co-efficient
c = Concentration of absorbing species i.e. protein
l = Path length of light
Tryptophan (Trp), phenylalanine (Phe ) and tyrosine (Tyr) are three aromatic amino acids which are used to measure protein concentration by UV. It is mainly because of tryptophan (Trp), protein absorbs at 280 nm which gives us an idea of protein concentration during UV spectroscopy.
The table depicting the wavelength at which these amino acids absorb and their respective molar extinction coefficient is as under:
Amino acid Wavelength Molar extinction co-efficient (∈)
Tryptophan 282 nm 5690
Tyrosine 274 nm 1280
Phenylalanine 257 nm 570
In view of table above, we can easily see that Molar extinction co-efficient (∈) of Tryptophan is highest amongst all these 3 amino acids that is why it dominates while measuring concentration.
Answer:
[Ne] 2s2 2p3
Explanation:
Phosphorus will most likely have an ion that will be 3- because it wants to have a full outer shell. Thus, the elctron configuration is: 1s2 2s2 2p6 3s2 3p3.
Answer:solid: still boi liquid: bouncy boi has: crazy boi
Explanation:
Answer:
Coefficient = 1.58
Exponent = - 5
Explanation:
pH = 2.95
Molar concentration = 0.0796M
Ka = [H+]^2 / [HA]
Ka = [H+]^2 / 0.0796
Therefore ;
[H+] = 10^-2.95
[H+] = 0.0011220 = 1.122 × 10^-3
Ka = [H+] / molar concentration
Ka = [1.122 × 10^-3]^2 / 0.0796
Ka = (1.258884 × 10^-6) / 0.0796
Ka = 15.815 × 10^-6
Ka = 1.58 × 10^-5
Coefficient = 1.58
Exponent = - 5