Explanation:
everything can be found in the picture
I think answer should be d. Please give me brainlest let me know if it’s correct
Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days
Answer:
16 m/s
Explanation:
Given that
y momentum = 0.080 *25 = 2
x momentum = 0.075*20 = 1.5
total momentum = √(4 + 2.25)
Total momentum = √6.25
Total momentum = 2.5
total mass = mass of x and y momentum = 0.075 + 0.080 = 0.155
speed of mass center = total momentum / total mass = 2.5/0.155 = 16.
And thus, the speed of the center of mass of this two-particle system at this instant is 16 m/s