Answer:
Vf = 41.6 [m/s].
Explanation:
To solve this problem we must use the equations of kinematics.
Vf² = Vo² + (2*g*y)
where:
Vf = final velocity [m/s]
Vo = initial velocity = 0
g = gravity acceleration = 9.81 [m/s²]
y = height = 88.2 [m]
Note: The positive sign of the equation tells us that the acceleration of gravity goes in the direction of motion.
Vf² = Vo² + (2*g*y)
Vf² = 0 + (2*9.81*88.2)
Vf = (1730.48)^0.5
Vf = 41.6 [m/s]
Answer:
The direction of magnetic field produced by a current carrying wire is given by the right hand thumb rule. If the thumb points in the direction of current the fingers curl along the direction of magnetic field.
further, The red end of the compass needle points in the direction of external magnetic field. As the red end of the needle is pointing away from us, the external magnetic field at its location should also be directed away from us. Using the right hand thumb rule, we can see that this is only possible if the current in the wire is flowing upwards.
Explanation:
Answer:
A. 36,000 W
Explanation:
= mass of the car = 900 kg
= Initial speed of the car = 20 m/s
= Final speed of the car = 0 m/s
= Work done by the brakes on the car
Magnitude of work done on the car by the brakes is same as the change in kinetic energy of the car.hence

= time taken by the car to come to stop = 5 s
= Average power produced by the car
Average power produced by the car is given as

Answer:
m = 30, g = 9.8, coefficient = 0.2, so force due to friction = 30 x 9.8 x 0.2 = 58.8 N, so work done by friction = 58.8 x 1.2 = 70.56 J
Explanation:
Soccer.hope this helps! brainiest please!