Answer:
The total amount after 3 years is = $ 2054.10
Explanation:
Given data
Principal Amount (P) = $ 1800
Rate of interest (R) = 4.5 %
Thus the total amount after 3 years compounded annually is given by the formula = P × ![[1 +\frac{R}{100} ]^{3}](https://tex.z-dn.net/?f=%5B1%20%2B%5Cfrac%7BR%7D%7B100%7D%20%20%5D%5E%7B3%7D)
⇒ 1800 × ![[1 +\frac{4.5}{100} ]^{3}](https://tex.z-dn.net/?f=%5B1%20%2B%5Cfrac%7B4.5%7D%7B100%7D%20%20%5D%5E%7B3%7D)
⇒ 2054.10
Thus the total amount after 3 years is = $ 2054.10
Compound interest earned in three years = 2054.10 - 1800 = $ 254.10
Its larger and if u where wondering to positive ions are smaller
Answer:
d. This statement is false. She and the Space Station share the same orbit and will stay together unless they are pushed apart.
Explanation:
In astronomy, orbit is simply a path of an object around another object in a space. That is, orbit is a path of a body that revolves around a gravitating center of mass. Examples of an orbit is are satellite around a planet, orbit around a center of galaxy, planet around the sun, and among others.
On the other hand, space station refers to a spacecraft that can support a group of human for long time in the orbit. Another names for space stations are orbital space station and orbital station.
Therefore, an astronaut goes on a space walk outside the Space Station shares the same orbit with the space station and they will stay together unless they are pushed apart.
Meters it the SI unit for measuring length.
Answer:
According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges
Explanation:
According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges. Since the potential energy of two charged particles is directly proportional to the product of the two charges, its magnitude increases as the charges of the particles increases. For like charges, the potential energy is positive(the product of the two alike charges must be positive) and since potential energy is inversely proportional to the distance between the charges therefore it decreases as the particles get farther apart . For opposite charges, the potential energy is negative(the product of the two opposite charges must be negative) and since potential energy is inversely proportional to the distance between the two charges, it becomes more negative as the particles get closer together.