Answer:
Non-zero digits are always significant
N2 + 3H2 --> 2NH3
Answer: 6 moles of hydrogen are needed to react with two moles of nitrogen.
Explanation:
Answer:
0.99 kg O₂
1.9 kg SO₂
Explanation:
Let's consider the reaction between sulfur and oxygen to form sulfur dioxide.
S + O₂ → SO₂
The mass ratio of S to O₂ is 32.07:32.00. The mass of oxygen required to react with 1 kg of sulfur is:
1 kg S × (32.00 kg O₂/32.07 kg S) = 0.998 kg O₂
The mass ratio of S to SO₂ is 32.07:64.07. The mass of sulfur dioxide formed when 1 kg of sulfur is burned is:
1 kg S × (64.07 kg SO₂/32.07 kg S) = 1.99 kg SO₂
Answer:
A. Position B.
Explanation:
In the summer the northern hemisphere is closer to the Sun so it's Position B.
Answer:
a. 7.8*10¹⁴ He⁺⁺ nuclei/s
b. 4000s
c. 7.7*10⁸s
Explanation:
I = 0.250mA = 2.5 * 10⁻³A
Q = 1.0C
1 e- contains 1.60 * 10⁻¹⁹C
But He⁺⁺ Carrie's 2 charge = 2 * 1.60*10⁻¹⁹C = 3.20*10⁻¹⁹C
(A).
No. Of charge per second = current passing through / charge
1 He⁺⁺ = 2.50 * 10⁻⁴ / 3.2*10⁻¹⁹C
1 He⁺⁺ = 7.8 * 10¹⁴ He⁺⁺ nuclei
(B).
I = Q / t
From this equation, we can determine the time it takes to transfer 1.0C
I = 1.0 / 2.5*10⁻⁴ = 4000s
(C).
Time it takes for 1 mol of He⁺⁺ to strike the target =?
Using Avogadro's ratio,
1.0 mole of He = (6.02 * 10²³ ions/mol ) * (1 / 7.81*10¹⁴ He ions)
Note : ions cancel out leaving the value of the answer in mols.
1.0 mol of He = 7.7 * 10⁸s