Answer:
Nitrifying Bacteria are a group of aerobic bacteria important in the nitrogen cycle as converters of soil ammonia to nitrates, compounds usable by plants. An example is nitrosomonas or nitrobacter and species in that family.
The schematic diagram is attached below, which summarises the oxidation of ammonia or free nitrogen in the soil to nitrates for the cowpea plant's utilisation.
Answer:
The answer to your question is P = 1.64 atm
Explanation:
Data
Volume = 2.5 x 10⁷ L
Temperature = 22°C
Pressure = ?
Moles = 1.7 x 10⁶
R = 0.082 atm L/ mol°K
Process
1.- Convert temperature to °K
Temperature = 22 + 273
= 295°K
2.- Use the Ideal gas law to solve this problem
PV = nRT
- Solve for P
P = nRT / V
- Substitution
P = (1.7 x 10⁶)(0.082)(295) / 2.5 x 10⁷
- Simplification
P = 41123000 / 2.5 x 10⁷
- Result
P = 1.64 atm
Answer: B or C
Explanation: The question does not include the variable or steps Brian is using so either one could be correct. It has to be the one that he is controlling though. This is because a control group is used to rule out any alternate explanations. Therefore the answer should be the one that he is trying to test out.
The effect of an insoluble impurity, such as sand, on the observed melting point of a compound would be none. It will not depress or elevate the melting point of the compound. Instead, it would affect the reading if you are trying to determine the melting point of the compound. This is because you might be missing the actual melting point of the compound since you will be waiting for the whole sample to liquify. You would not be able to determine exactly that temperature because of the insoluble impurity would have a different melting point than that of the compound.
Annually 126.0 million metric tons of soil nutrients are lost.
<u>Explanation</u>:
- By the given data we can identify the loss of soil nutrients in the United States. In the first year, a total of 1.0 million soil nutrients are lost.
- After that in the second year, the loss has doubled. 10.0 million metric tons of soil nutrients are lost.
- In the third year, 16.0 million soil nutrients are lost in the US.
- In the final year, 90.0 million soil nutrients are lost. It is a very huge loss. By calculating all the above , a total 126.0 million of soil nutrients in the US are lost annually.