The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
Answer:
For terrestrial animals, grazing is normally distinguished from browsing in that grazing is eating grass or forbs, and browsing is eating woody twigs and leaves from trees and shrubs. Grazing differs from true predation because the organism being grazed upon is not generally killed.
Explanation:
The mass of nitrogen collected is mathematically given as
M-N2=0.025gram
<h3>What is the mass of nitrogen collected?</h3>
Question Parameters:
A sample weighing 2.000g
the liberated NH3 is caught in 50ml pipeful of H2SO4 (1.000ml = 0.01860g Na2O).
T=26.3c=299.3K
Pressure=745mmHg=745torr
Pressure of N2=745-25.2=719.8torr
Generally, the equation for the ideal gas is mathematically given as
PV=nRT
Therefore
719.8/760=45.6/1000=n*0.0821*299.3
n=0.00176*14
In conclusion, the Mass of N2
M-N2=0.00176*14
M-N2=0.025gram
Read more about Mass
brainly.com/question/4931057
I believe it was a blue mustang