Of these options, I'd say the third choice or "Many species of organisms that lived long ago are now extinct". I hope this helps :)
Answer: The ion formed after the reduction of bromine is 
Explanation:
The electronic configuration of Sodium (Na) = ![[Ne]3s^1](https://tex.z-dn.net/?f=%5BNe%5D3s%5E1)
The electronic configuration of Bromine (Br) = ![[Ar]3d^{10}4s^24p^5](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E5)
From the above configurations, Sodium ion will loose 1 electron in order to gain stable electronic configuration and that electron is accepted by the Bromine atom because it is 1 electron short of the stable electronic configuration.
(oxidation reaction)
(Reduction reaction)
Bromine atom is reduced to form 
Reduction reactions are the reactions in which the element gain electrons.
Oxidation reactions are the reactions in which the element looses its electrons.
It is on a plate boundary so there are a lot of volcanoes in that area. All the volcanoes form a "ring" around the plate boundary.
Answer:
- <em>The solution expected to contain the greatest number of solute particles is: </em><u>A) 1 L of 1.0 M NaCl</u>
Explanation:
The number of particles is calculated as:
a) <u>For Ionic compounds</u>:
- molarity × volume in liters × number of ions per unit formula.
b) <u>For covalent compounds</u>:
- molarity × volume in liters
The difference is a factor which is the number of particles resulting from the dissociation or ionization of one mole of the ionic compound.
So, calling M the molarity, you can write:
- # of particles = M × liters × factor
This table show the calculations for the four solutions from the list of choices:
Compound kind Particles in solution Molarity # of particles
(dissociation) (M) in 1 liter
A) NaCl ionic ions Na⁺ and Cl⁻ 1.0 1.0 × 1 × 2 = 2
B) NaCl ionic ions Na⁺ anc Cl⁻ 0.5 0.5 × 1 × 2 = 1
C) Glucose covalent molecules 0.5 0.5 × 1 × 1 = 0.5
D) Glucose covalent molecules 1.0 1.0 × 1 × 1 = 1
Therefore, the rank in increasing number of particles is for the list of solutions given is: C < B = D < A, which means that the solution expected to contain the greatest number of solute particles is the solution A) 1 L of 1.0 M NaCl.
Answer:
2.41 M
Explanation:
The molarity is the moles of FeCl3 over the liters of solution. Since you're given mL you need to change it to L which is 0.12 L. 0.289 divided by 0.12 is your answer