Answer:
49.4 g Solution
Explanation:
There is some info missing. I think this is the original question.
<em>A chemistry student needs 20.0g of acetic acid for an experiment. He has 400.g available of a 40.5 % w/w solution of acetic acid in acetone. </em>
<em>
Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.</em>
<em />
We have 400 g of solution and there are 40.5 g of solute (acetic acid) per 100 grams of solution. We can use this info to find the mass of acetic acid in the solution.

Since we only need 20.0 g of acetic acid, there is enough of it in the solution. The mass of solution that contains 20.0 g of solute is:

Answer:
Hydrogen(H) and Heluim(He)
Explanation:
These are the only two valennce electrons and 1 energy levels.
Answer:
Explanation:
<u>1) Data:</u>
Base: NaOH
Vb = 15.00 ml = 15.00 / 1,000 liter
Mb = ?
Acid: H₂SO₄
Va = 17.88 ml = 17.88 / 1,000 liter
Ma = 0.1053
<u>2) Chemical reaction:</u>
The <em>titration</em> is an acid-base (neutralization) reaction to yield a salt and water:
- Acid + Base → Salt + Water
- H₂SO₄ (aq) + NaOH(aq) → Na₂SO₄ (aq) + H₂O (l)
<u>3) Balanced chemical equation:</u>
- H₂SO₄ (aq) + 2 NaOH(aq) → Na₂SO₄ (aq) + 2H₂O (l)
Placing coefficient 2 in front of NaOH and H₂O balances the equation
<u>4) Stoichiometric mole ratio:</u>
The coefficients of the balanced chemical equation show that 1 mole of H₂SO₄ react with 2 moles of NaOH. Hence, the mole ratio is:
- 1 mole H₂SO₄ : 2 mole NaOH
<u>5) Calculations:</u>
a) Molarity formula: M = n / V (in liter)
⇒ n = M × V
b) Nunber of moles of acid:
- nₐ = Ma × Va = 0.1053 (17.88 / 1,000)
c) Number of moles of base, nb:
- nb = Mb × Vb = Mb × (15.00 / 1,000)
d) At equivalence point number of moles of acid = number of moles of base
- 0.1053 × (17.88 / 1,000) = Mb × (15.00 / 1,000)
- Mb = 0.1053 × 17.88 / 15.00 = 0.1255 mole/liter = 0.1255 M
5. Eubacteria
6. Plantae
7. Animalia
8. Protist (technically not a kingdom)
9. Archaebacteria
10. Fungi
Answer:
The pressure in the gas is 656mmHg
Explanation:
In calculating the pressure of the gas;
step 1: convert the height of the mercury arm to mmHg
9.60cm = 96.0 mmHg
step 2: convert 752 torr to mmHg
I torr is 1 mmHg
752 torr = 752mmHg
Step 3: since the level of mercury in the container is higher than the level of mercury exposed to the atmosphere, we substrate the values to obtain our pressure.
So, 752mmHg - 96mmHg = 656mmHg
The pressure in the gas container is therefore 656mmHg.
N. B : if the mercury arm is in lower position, you add.