1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
3 years ago
13

Why is electrostatic force able to act at a distance ​

Physics
1 answer:
mote1985 [20]3 years ago
7 0
In Electrostatics the electrical force between Two charged objects is inversely Related to the distance of separation between the two objects .
You might be interested in
Two particles are separated by 0.38 m and have charges of -6.25 x 10-°C
Studentka2010 [4]

Answer:

did u get it?

Explanation:

frfr

5 0
3 years ago
Read 2 more answers
The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static fricti
Colt1911 [192]

This question is incomplete, the complete question;

The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static friction at A is μ = 0.4.

Determine the magnitude of force at point A and determine if the ladder will slip. given the following; L = 10 FT, W = 76 lb

Answer:

- the magnitude of force at point A is 79.1033 lb

- since FA < FA_max; Ladder WILL NOT slip

Explanation:

Given that;

∑'MA = 0

⇒ NB [Lsin∅] - W[L/2.cos∅] = 0

NB = W / 2tan∅ -------let this be equation 1

∑Fx = 0

⇒ FA - NB = 0

FA = NB

therefore from equation 1

FA = NB = W / 2tan∅

we substitute in our values

FA = NB = 76 / 2tan(60°) = 21.9393 lb

Now ∑Fy = 0

NA - W = 0

NA = W = 76 lb

Net force at A will be

FA' = √( NA² + FA²)

= √( (W)² + (W / 2tan∅)²)

we substitute in our values

FA' = √( (76)² + (21.9393)²)

= √( 5776 + 481.3328)

= √ 6257.3328

FA' = 79.1033 lb

Therefore the magnitude of force at point A is 79.1033 lb

Now maximum possible frictional force at A

FA_max = μ × NA

so, FA_max = 0.4 × 76

FA_max = 30.4 lb

So by comparing, we can easily see that the actual friction force required for keeping the the ladder stationary i.e (FA) is less than the maximum possible friction available at point A.

Therefore since FA < FA_max; Ladder WILL NOT slip

5 0
2 years ago
The resistance, R, of a wire varies directly as its length and inversely as the square of its diameter. If the resistance of a w
lbvjy [14]

R is proportional to the length of the wire:

R ∝ length

R is also proportional to the inverse square of the diameter:

R ∝ 1/diameter²

The resistance of a wire 2700ft long with a diameter of 0.26in is 9850Ω. Now let's change the shape of the wire, adding and subtracting material as we go along, such that the wire is now 2800ft and has a diameter of 0.1in.

Calculate the scale factor due to the changed length:

k₁ = 2800/2700 = 1.037

Scale factor due to changed diameter:

k₂ = 1/(0.1/0.26)² = 6.76

Multiply the original resistance by these factors to get the new resistance:

R = R₀k₁k₂

R₀ = 9850Ω, k₁ = 1.037, k₂ = 6.76

R = 9850(1.037)(6.76)

R = 69049.682Ω

Round to the nearest hundredth:

R = 69049.68Ω

8 0
3 years ago
A 2 L balloon filled with gas is warmed from 280 K to 700 K. What is the volume of the gas after it is heated?
irakobra [83]

Answer:

New volume, v2 = 0.8L

Explanation:

<u>Given the following data;</u>

Original Volume = 2L

Original Temperature = 280K

New Temperature = 700K

To find new volume V2, we would use Charles' law.

Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.

Mathematically, Charles is given by;

VT = K

\frac{V1}{T1} = \frac{V2}{T2}

\frac{V1}{T1} = \frac{V2}{T2}

Making V2 as the subject formula, we have;

V_{2}= \frac{V1}{T1} * T_{2}

V_{2}= \frac{2}{700} * 280

V_{2}= 0.0029 * 280

V2 = 0.8L

Therefore, the volume of the gas after it is heated is 0.8L.

7 0
3 years ago
The acceleration due to gravity on the surface of Jupiter is about 2.5 times the acceleration due to gravity on Earth’s surface.
Ann [662]

Answer: The correct answer is option C.

Explanation:

Weight = Mass × Acceleration

Let the mass of the space probe be m

Acceleration due to gravity on the earth = g

Weight of the space probe on earth = W

W=m\times g

Acceleration due to gravity on the Jupiter = g' = 2.5g

Weight of the space probe on earth = W'

W'=mg'=m\times 2.5g

\frac{W'}{W}=\frac{m\times 2.5g}{m\times g}

W'=2.5\times W

The weight of the space probe on the Jupiter will be 2.5 times the weight of the space probe on earth.

Hence, the correct answer is option C.

6 0
3 years ago
Other questions:
  • Assume a satellite shines an unpolarized light on a telescope. The intensity of the light as it reaches the telescope is 1.1*10-
    14·1 answer
  • Most scientific questions are based on
    10·2 answers
  • Note: Take East as the positive direction. A(n) 81 kg fisherman jumps from a dock into a 128 kg rowboat at rest on the West side
    13·1 answer
  • What's inside a nucleus and makes RNA to make proteins
    7·1 answer
  • The membrane that surrounds a certain type of living cell has a surface area of 5.1 x 10-9 m2 and a thickness of 1.4 x 10-8 m.
    6·1 answer
  • The topsoil layer has the greatest concentration of organic matter. The subsoil generally lacks organic matter, but it does rece
    6·1 answer
  • What is involved in a career exploration
    15·2 answers
  • A free undamped spring/mass system oscillates with a period of 4 seconds. When 10 pounds are removed from the spring, the system
    5·1 answer
  • Tin shears have longer handles than the scissors used to cut cloth why ​
    12·1 answer
  • The strength of an object's gravitational force is affected by both____<br> and____
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!