Answer:
Here are five important characteristics: wavelength, amplitude, frequency, time period, and velocity. The wavelength of a sound wave can tell the distance that wave travels before it repeats itself. The wavelength itself is a longitudinal wave that show compression and rarefactions of sound waves.
Explanation:
Hope this helped please pick me brainliest
Answer:
The water phase with the smallest temperature increase when adding 10 kcal of heat is solid ice.
Explanation:
The rest of the statements are incorrect. The density of ice is lower than the density of water. The heat capacity of solid ice is greater almost twice the heat capacity of the liquid water. The heat capacity of vapors is less than heat capacity of liquid.
Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
<h3>
Answer:</h3>
498 kj/mol
<h3>
Explanation:</h3>
- Chemical reactions occur as a result of bond breaking and bond formation.
- The bonds in reactants are broken and atoms are rearranged to form new bonds.
- During bond breaking energy is absorbed to break the bonds of reactants while bond formation involves the release of energy during the formation of new bonds.
In our case;
In 1 mole of the Oxygen molecule, there is one O=O bond
Energy absorbed to break O=O is 498 kJ/mol
Therefore, the ΔH required to break all the bonds in one mole of Oxygen(O₂) molecules is 498kJ/mol.
Note that, bond breaking is endothermic since energy is absorbed from the surroundings.