Answer:
probably B
Explanation:
it's not their job to sort out the cost of cleaning it up or worry about the public opinion. they should only make sure it doesn't happen again so they should find out why it happened
Answer: 3 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum: during the collision between the two balls, the total momentum of the system before the collision and after the collision must be conserved:

The total momentum before the collision is given only by the cue ball, since the solid ball is initially at rest, therefore

So, the final total momentum will also be

And the total momentum after the collision is given only by the solid ball, since the cue ball is now at rest, therefore:

from which we find the velocity of the solid ball

The answer to your question is,
A scientific law.
-Mabel <3
As per the question, the mass of meteorite [ m]= 50 kg
The velocity of the meteorite [v] = 1000 m/s
When the meteorite falls on the ground, it will give whole of its kinetic energy to earth.
We are asked to calculate the gain in kinetic energy of earth.
The kinetic energy of meteorite is calculated as -
![Kinetic\ energy\ [K.E]\ =\frac{1}{2} mv^2](https://tex.z-dn.net/?f=Kinetic%5C%20energy%5C%20%5BK.E%5D%5C%20%3D%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
![=\frac{1}{2}50kg*[1000\ m/s]^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D50kg%2A%5B1000%5C%20m%2Fs%5D%5E2)

Here, J stands for Joule which is the S.I unit of energy.
Answer: 0.5334
Explanation:
i got it right on accellus :p