Solid metal is all different types of metals or some thing that a magnet can pick up that's a full hard solid
but a non metal is everything not metal that's a solid like plastic a hot glue gun can burn throught plastic and not metal
so in conclusion metal is stronger and thicker than non modal things
Main sequence stars are characterised by the source of their energy.They are all undergoing fusion of hydrogen into helium within their cores. The mass of the star is the main element for such process or phenomenon to take place for it is a determinant of both the rate at which they perform the said activity and the amount of fuel available.
To answer the question, the lower mass limit for a main sequence star is about 0.08. If the mass of a main sequence star is lower than the above-mentioned value, there would be a deficit or insufficiency of gravitational force to generate a standard temperature for hydrogen core fusion to take place and the underdeveloped star would form into a brown dwarf instead.
Answer:
D. none of them.
Explanation:
This is because Ohm's law is:
Voltage = Current × Resistance
or,
V = IR
Answer:
the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Explanation:
The computation of the magnitude of the each force is shown below:
Provided that
Ratio of forces = 3: 5
Let us assume the common factor is x
Now
first force = 3x
And, the second force = 5x
Resultant force = 35 N
The Angle between the forces = 60 degrees
Based on the above information
Resultant force i.e. F = √ F_1^2 +F_2^2 + 2 F_1F_2cos
35 = √[(3x)²+ (5x)²+ 2 (3x)(5x) cos 60°]
35 =√ 9x² + 25x² + 15x² (cos 60° = 0.5)
35 = √49 x²
x = 5
So, the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Answer:
50 J
Explanation:
The net force acting on the box is given by the algebraic sum of the two forces, so:

The net work done on the box is equal to (assuming the net force is parallel to the displacement of the object)

where
F = 5 N is the net force on the object
d = 10 m is the displacement of the object
Substituting,
