Answer:
TATTCATTCATTA—TGATTT—ATTCG
Explanation:
A mutation is a permanent change in the nucleotide sequence of DNA. A mutation occurs during replication or recombination. It may be due to base substitutions, deletions and insertions. As per the question, DNA segment forms encodes for the enzyme pepsin is CATTGTTA.
Option TATTCATTCATTA—TGATTT—ATTCG is the correct answer. In the DNA segment which encodes pepsin, a purine base (G) guanine is replaced by another purine (A) adenine. This type of mutation is called a transition type point mutation.
Due to base substitution, the mutated segment CATTCATTA will nor encode pepsin.
About 13.7 billion years ago
The Big Bang Theory states that the universe started about 13.7 billion years ago, and before that, everything was in 1 singularity.
Gravitational force depends on inverse square law. That is, gravitational force is inversely proportional to square of distance between asteroids.
As distance between them decreases, gravitational force increases. Hence A is correct.
Answer:
Speed greater than 4 m/s
Explanation:
Given that Ms. Kasper is in a panic. Her cat, Penny, is stuck in a tree and about to jump out. In order to save her cat, Ms. Kasper needs to run to the tree, 12 meters away. If it takes her cat, 3 seconds to fall, how fast would Ms. Kasper have to run to save her cat?
The distance = 12 m
Time = 3s
Speed = distance/time
Speed = 12/3
Speed = 4 m/s
Ms Kasper must run at speed more than 4m/s for her to save the cat.
Answer:
The answer is True
Explanation:
Statistical Multiplexing is considered an example of communication link sharing which makes it comparable to DBA (Dynamic Bandwidth Allocation). Here, communication channels are broken down into data streams to optimize the communication process.
In Statistical Time-division Multiplexing, time slots are allocated to data streams for communication optimization. This method makes sure that no time slot or bandwidth is wasted.
Hence, the sum of combined circuits must not be equal to the capacity of the circuit to work effectively.